DATA VISUALISATION (QUANTITATIVE)
Visualising Data

- More important than statistical tests! (?)
- Telling a story in a graph
- R has some great packages for visualising your data, especially **ggplot**
ggplot2

- Part of (and complementary to) the tidyverse collection

- Beautiful and informative code, for beautiful and informative graphs

- Expects tidy data; one observation per row
 - (See tidyverse introduction from this morning)
Plan for the Session

- Introduce ggplot2

- Explain how it works, and show some example output

- Practice on some data we’re interested in
ggplot2 Syntax

```r
library(tidyverse)

iris %>%
ggplot(
  aes(x=Sepal.Length, y=Petal.Length)) +
geom_point()
```

- **Load in packages**
- **Data**
- **Pipe data into the plot**
- **Build ggplot object**
- **Add feature to ggplot object**
- **Plot feature**
ggplot2 Syntax - Pipes

library(tidyverse)

iris %>%
 ggplot(aes(x=Sepal.Length, y=Petal.Length)) +
 geom_point()

Remember, this is equivalent to...
ggplot2 Syntax - Pipes

library(tidyverse)

ggplot(iris, aes(x=Sepal.Length, y=Petal.Length)) + geom_point()
ggplot2 syntax

iris %>%
 ggplot(aes(x = Sepal.Length, y = Petal.Length)) +
 geom_point()
Multiple possible “geoms”

Which geom you want will depend on what your variables are like:
 ▪ How many?
 ▪ Are they discrete (categorical) or continuous (numerical)?

Most useful geoms can be found on the ggplot cheat sheet

A full list of geoms is available on the ggplot reference page

Google to find the geom you want, e.g.:
 “ggplot scatter graph” will return results showing that you want geom_point()
ggplot2 syntax

```r
iris %>%
ggplot(aes(x = Sepal.Length, y = Petal.Length)) +
  geom_point()
```
ggplot2 syntax

```r
iris %>%
  ggplot(aes(x = Sepal.Length, y = Petal.Length)) +
  geom_smooth()
```
ggplot2 syntax

```r
iris %>%
  ggplot(aes(x = Sepal.Length, y = Petal.Length)) +
  geom_point() +
  geom_smooth()
```
ggplot2 syntax

```r
iris %>%
  ggplot(aes(x = Sepal.Length, y = Petal.Length)) +
  geom_point() +
  geom_smooth(method = "lm")
```
Aesthetics: aes()

- Tells ggplot what variables to plot, and which visual features should represent them

- Possible aesthetics include:
 - x
 - y
 - colour / color
 - fill
 - shape
ggplot2 syntax

```r
iris %>%
  ggplot(aes(x = Sepal.Length, y = Petal.Length)) +
  geom_point()
```
`ggplot2` syntax

```r
iris %>%
  ggplot(aes(x = Sepal.Length, y = Petal.Length, colour = Species)) +
  geom_point()
```
ggplot2 syntax

```r
iris %>%
  ggplot(aes(x = Sepal.Length, y = Petal.Length, colour = Species)) +
  geom_point() +
  geom_smooth(method = "lm")
```
iris %>%
ggplot(aes(x = Sepal.Width)) +
geom_histogram(binwidth = 0.1)

Visualising Distributions - Histograms
Visualising Distributions – Density Plots

```r
iris %>%
  ggplot(aes(x = Sepal.Length)) +
  geom_density()
```
Visualising Distributions – Density Plots

```r
iris %>%
  ggplot(aes(x = Sepal.Length, fill = Species)) +
  geom_density()
```
Visualising Distributions – Density Plots

```r
iris %>%
  ggplot(aes(x = Sepal.Length, fill = Species)) +
  geom_density(alpha = 0.5)
```
Bar graphs can show us summaries about our data, but don’t tell us much about the underlying distributions.

Ban the Bar Graph!
One Alternative – Violinbox Plots

```r
iris %>%
ggplot(aes(x = Species, y = Sepal.Length, fill = Species)) +
geom_violin(alpha = 0.5) +
geom_boxplot(width = 0.2)
```
Time to Practice!
Example data

- Available in the .zip folder: haggis.csv

- Heights for two groups, based on lifetime breakfast habits:
 - Porridge eaters
 - Haggis eaters

- 64 Participants in each group (128 participants in total)

- Who will be taller?
SPSS and Microsoft Excel – Bar Graphs (Yuck!)

Simple Bar Mean of height by group

Sum of height by group

*Error bars show SEM
So Haggis Eaters are Taller than Porridge Eaters, right?

- Well, let’s load the data and have a gander!

TASK 1:
- Create a new (or use an existing) .Rmd file to make notes in
- Load in the tidyverse packages
- Load in the dataset

 hint: `read_csv()`

Have a go, and then we’ll go through it together
So Haggis Eaters are Taller than Porridge Eaters, right?

- Well, let’s load the data and have a gander!

TASK 1:
- Create a new (or use an existing) .Rmd file to make notes in
- Load in the tidyverse packages
- Load in the dataset *hint: read_csv()*

Have a go, and then we’ll go through it together
Task 1 – Solution

```r
haggis <- read_csv("haggis.csv")
```
Task 2 – Visualise Height by Breakfast Group

- Create a violinbox plot, showing how height differs between haggis and porridge eaters.

Have a go, and then we’ll go through it together
Task 2 – Solution

```r
haggis %>%
ggplot(aes(x = group, y = height, fill = group)) +
geom_violin(alpha = 0.5) +
geom_boxplot(width = 0.1)
```
Task 3 – Check the Distributions

Create two density plots to see:

a) How the distribution of height differs between pop fans and classical fans
b) How the distribution of age differs between pop fans and classical fans

Have a go, and then we’ll go through it together
haggis %>%
 ggplot(aes(x = height, fill = music_taste)) +
 geom_density(alpha = 0.5)
Task 3 – Solution b)

```r
haggis %>%
  ggplot(aes(x = age, fill = music_taste)) +
  geom_density(alpha = 0.5)
```
Task 4 – Does Age predict Height?

- Draw a scatter plot to see how age predicts height. Add a line showing the linear relationship between age and height.

Have a go, and then we’ll go through it together
Task 4 – Solution

```r
haggis %>%
  ggplot(aes(x = age, y = height)) +
  geom_point() +
  geom_smooth(method = "lm")
```
Task 5 – Does Age interact with Breakfast Habits?

- Recreate the previous graph, but colour the points and line by participants' breakfast habits.

Have a go, and then we’ll go through it together
Task 5 – Solution

```r
haggis %>%
  ggplot(aes(x = age, y = height, colour = group)) +
  geom_point() +
  geom_smooth(method = "lm")
```
Task 6 – Does Music Taste interact with Breakfast Preference?

- Create a violinbox plot as you did in Practice Question 2, but split by music taste *as well as* breakfast group.

Have a go, and then we’ll go through it together
```r
haggis %>%
  ggplot(aes(x = group, y = height, fill = music_taste)) +
  geom_violin(alpha = 0.5) +
  geom_boxplot(width = 0.2, position = position_dodge(width = 0.9))
```
Conclusion

Ariana Grande + Oatmeal = ?
Conclusion

Well... no.

• We don’t know anything about the possible causal relationships, and only looked at our data in an exploratory way

• Also, the data was kind of made up.
Real Conclusion

• Data Visualisation in R is fun, easy, and informative!

• If we’re looking at differences between groups, it’s important to not hide the distributions behind bar graphs and summary statistics.

• Googling for R solutions is a skill in itself.