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"Trying to use a survey of 3,000 people to estimate tiny differences in
sex ratios: this makes about as much sense as using a bathroom
scale to weigh a feather, when that feather is resting loosely in the
pouch of a kangaroo that is vigorously jumping up and down."

| Andrew Gelman, 2018, The Failure of Null Hypothesis Significance Testing

When Studying Incremental Changes, and What to Do About lt. Personality
\ and Social Psychology Bulletin
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Teaching benefits

introduce or consolidate:

- key frequentist concepts (sampling distributions, SE, confidence
intervals...)

- inferential statistics

- experimental design (how do | bootstrap my data?)

- robust statistics

- simulations

- R skills (including graphical representations)

- dealing with distributions of plausible population values -> Bayes
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BOOTSTRAP METHODS: ANOTHER LOOK AT THE JACKKNIFE

By B. EFRON
Stanford University
We discuss the following problem: given a random sample X =
(X, Xy ..., X,) from an unknown probability distribution F, estimate the

sampling distribution of some prespecified random variable R(X, F), on the
basis of the observed data x. (Standard jackknife theory gives an approximate
mean and variance in the case R(X, F) = 0(F) — 8(F), 8 some parameter of
interest.) A general method, called the “bootstrap,” is introduced, and shown to
work satisfactorily on a variety of estimation problems. The jackknife is shown
to be a linear approximation method for the bootstrap. The exposition proceeds
by a series of examples: variance of the sample median, error rates in a linear
discriminant analysis, ratio estimation, estimating regression parameters, etc.



Monagraphs
on Statistics and
Applied Prohability 57

An

Introduction
to the

Bootstrap

Bradley Efron
Robert J. Tibshirani

CHAFMAN & HALL\CRC

ABDIDIRQ SINYD

BRADLEY EFRON
TREVOR HASTIE

Introduction to

Robust Estimation
- andHypothesis

- ', Testing-




6

6.1
6.2
6.3
6.4
6.5

7

7.1
7.2
7.3
7.4
7.5

8

8.1
8.2
8.3
8.4
8.5

9

9.1
9.2
9.3
9.4
9.5
9.6

10

10.1
10.2
10.3

PartII Early Computer-Age Methods

Empirical Bayes

Robbins’ Formula

The Missing-Species Problem
A Medical Example

Indirect Evidence 1

Notes and Details

BRADLEY EFRON
TREVOR HASTIE

James—Stein Estimation and Ridge Regression
The James—Stein Estimator

The Baseball Players

Ridge Regression

Indirect Evidence 2

Notes and Details

Generalized Linear Models and Regression Trees
Logistic Regression

Generalized Linear Models

Poisson Regression

Regression Trees

Notes and Details

Survival Analysis and the EM Algorithm
Life Tables and Hazard Rates

Censored Data and the Kaplan—-Meier Estimate
The Log-Rank Test

The Proportional Hazards Model

Missing Data and the EM Algorithm

Notes and Details

The Jackknife and the Bootstrap

The Jackknife Estimate of Standard Error
The Nonparametric Bootstrap
Resampling Plans

Pt e ek et e ek
!‘QEJ!Q!Q!JN
Lh £ Wl b e

—_
L

13.1
13.2
13.2
13.4
13.5
136

14

15

15.1
15.2
15.2
154
15.5
156
15.7

16

The Paramelric Bootstrap
Influence Functions and Robust Estimation
Notes and Details

Bootstrap Confidence Intervals

Nevman's Construction for One-Parumeter Problems

The Percentle Method

Bias-Corrected Confidence Intervals

Second-Order Accuracy

Boolstrap-f Intervals

Objective Bayes Intervals and the Confidence Distribution
Notes and Details

Cross-Validation and C', Estimates of Prediction Error
Prediction Rules

Cross-Validation

Covanance Penallics

Traimng, Vahidation, and Ephemeral Predictors

Notes and Details

Objective Bayes Inference and MCMC

Objective Prior Distributions

Conjugate Prior Distributions

Model Selection and the Bayesian Informaton Criterion
Gibbs Sampling and MCMC

Example: Modeling Population Admixture

Notes and Details

Postwar Statistical Inference and Methodology

Part Il1 Twenty-First-Century Topics

Large-Scale Hypothesis Testing and FDRs
Large-Scale Testing

False-Discovery Rates

Empirical Bayes Large-Scale Testing

Local False-Discovery Rates

Choice of the Null Distribution

Relevance

Notes and Details

Sparse Modecling and the Lasso

269

271
272
275
278
282
286
290
294



FHhe bootstrap?

percentile bootstrap-t hierarchical

bootstrap bootstrap
fractional- BCA

random- bootstra AA bootstrap
weight boot P

observed
iImposed
bootstrap

smooth wild
bootstrap bootstrap




Bootstrap demo:
[1] sampling without replacement
[2] sampling with replacement
[3] bootstrap sampling




R implementation

n<-6
samp <- 1:n
sample(samp, size=n, replace=TRUE)



3 bootstrap samples

set.seed(21) # reproducible example

nboot <- 3

matrix(sample(samp, size = n*nboot, replace =
TRUE), nrow = nboot, byrow = TRUE)

[11525266126656142142

[,1] [,2] [,3]1 [,4] [,5] [,6]
n,J s 2 S 2 6 &
2,1 1 2 6 6 5 6
3,] 1 4 2 1 4 2



BSootstrap: central iIdea

* “The bootstrap is a computer-based method for
assigning measures of accuracy to statistical
estimates.” Efron & Tibshirani, 1993

* “The central idea is that it may sometimes be
better to draw conclusions about the
characteristics of a population strictly from the
sample at hand, rather than by making perhaps
unrealistic assumptions about the population.”
Mooney & Duval, 1993
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bootstrap philosophy

-

~N

BRAIN

v*

n samples

WIT

replace

N/

[ ANALYSES |

ment  +*

*

“---......
L/

+" BOOTSTRAP *,
., SAMPLES ¢

L 4
*
e, ®
....

-

[ confidence Iintervals j

13



Percentile bootstrap: general recipe

(1) sample WITH
replacement n
observations

(2) compute estimate
e.g. sum, trimmed mean

(3) repeat (1) & (2) b times

-

original data

~N

EEEEEEE

bootstrapped data

~N

v

>

21 22 23 24 25 26

(4) get 1-alpha confidence interval
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R Implementation

Loop

set.seed(21) # reproducible results
nboot <- 1000 # number of bootstrap samples

# declare vector of results
boot.m <- vector(mode = "numeric", length = nboot)

for(B in 1:nboot){
boot.samp <- sample(samp, size = n, replace = TRUE) # sample with replacement
boot.m[B] <- mean(boot.samp) # save bootstrap means

}

Matrix method

set.seed(21)
boot.m <- apply(matrix(sample(samp, size = n*nboot, replace = TRUE), nrow = nboot), 1, mean)



First 50 bootstrap means
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Density plot of 1,000 bootstrap estimates

0.61

0.4-

Density

0.2-

0.0+

Bootstrap means



Density plot of 1,000 bootstrap estimates

0.6

Bootstrap sampling distribution

Can be used to compute: 0.4-
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- bias estimate 5

- confidence interval
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More about bias and bootstrap bias estimation...
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10000 sample means: mean =50, sd = 2.26
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Bootstrap estimation of
the sampling distribution:

nboot <- 1000 # number of bootstrap samples
# samp # random sample from population
n <- length(samp) # sample size

# declare vector of results
boot.m <- vector(mode = "numeric", length = nboot)

for(B in 1:nboot){ # bootstrap loop
# sample with replacement

boot.samp <- sample(samp, size = n, replace = TRUE)
# save bootstrap means
boot.m{B] <- mean(boot.samp)

}

Simulation of
sampling distribution:

nsim <- 1000 # number of simulation iterations
n <- 20 # sample size
pop <- rnorm(100000, mean = @, sd = 1)

# declare vector of results
sim.m <- vector(mode = "numeric", length = nsim)

for(S in 1:nsim){ # simulation loop
# sample with replacement from population

sim.samp <- sample(pop, size = n, replace = TRUE)
# save simulated sample means
sim.m[S] <- mean(sim.samp)

}
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Sampling distribution
of the mean
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Bootstrap sampling
distribution of the mean
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More samples...

Sampling = 10000 experiments; Bootstrap = 1 experiment
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Sootstrap confidence interval
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alpha <- 0.05
cl1 <- quantile(boot.m, probs = c(Calpha/2, 1-alpha/2))
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Strengths of the bootstrap + robust estimates

e Bobust to heteroscedasticity

¢ Robust to non-normality

¢ Robust to outliers

e Confidence intervals can be computed for any
statistics

e But Nno obvious best method...



The bootstrap alone is not robust
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The bootstrap alone is not robust
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Confidence interval coverage: expected level?
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Coverage simulation: when is a 95% confidence
interval not a 95% confidence interval”

# Define parameters

nsim <- 10000 # simulation iterations
nsamp <- 30 # sample size

alpha.val <- 0.05

pop <- rnorm(1000000) # define population
pop.m <- mean(pop) # population mean

# declare matrices of results
ci.cov.norm <- matrix(@, nrow = nsim, ncol = 2)

for(S in 1:nsim){ # simulation loop

# random sample from population
samp <- sample(pop, nsamp, replace = TRUE)

I MEAN & T=TOST = o e o o e o o e o o e

ci <- t.test(samp, mu = popl.m, conf.level = 1-alpha.val)$conf.int
# CI includes population value?

ci.cov.norm[S,1] <- ci[1l]<pop.m && ci[2]>pop.m

# mean + percentile bootstrap -----------------

ci <- onesampb(samp, est=mean, nboot=nboot, trim=0, alpha=alpha.val)$ci
# CI includes population value?

ci.cov.norm[S,2] <- ci[1l]<pop.m && ci[2]>pop.m

}

apply(ci.cov.norm, 2, mean) # average across simulations for each method



Coverage simulation
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Percentile bootstrap: general recipe

group groupZ
B HENNN
(1) sample WITH
replacement n i [] .> <- [] -E
observations
(2) compute estimate V V

D*n

e.g. trimmed mean —
& get difference

repeat (1) & (2) b times
get Cl at the 1-alpha level



resampling strategies:
follow the data acquisition process

independent sets: dependent sets:
®? conditions in single- e conditions In group analyses
subject analyses e correlations

®? groups of subjects, e.g.  e®linear regression
patients vs. controls
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Hierarchical bootstrap

raw trials/samples: RT, correct/incorrect (0/1), Likert scale, MCAQ....
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Teaching benefits

iIntroduce or consolidate:

- key frequentist concepts (sampling distributions, SE, confidence
intervals...)

- inferential statistics

- experimental design (how do | bootstrap my data?)

- robust statistics

- simulations

= R skills (including graphical representations)

- dealing with distributions of plausible population values -> Bayes
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