Estimating Distributional Parameters in Hierarchical Models

Introduction: Variability in Hierarchical Models

Linear Models

$$y_{ij} = \beta_0 + \beta_1 X_{ij} + e_{ij}$$
$$e_{ij} \sim N(0, \sigma^2)$$

- Modelling central tendency
- Response (y_{ij}) is a sum of intercept (β_0) , slopes $(\beta_1, \beta_2, ...)$, and error (e_{ij})
- Error is assumed to be normally distributed around zero

Linear Models

lm(y ~ pred)

- Modelling central tendency
- Response (y) is a sum of intercept (implicit), slopes (pred), and error (implicit)
- Error is assumed to be normally distributed around zero

Linear Mixed Effects Models

$$y_{ij} = \beta_0 + \mu_{0i} + (\beta_1 + \mu_{1i})X_{ij} + e_{ij}$$
$$\mu_{0i} \sim N(0, \sigma^2)$$
$$\mu_{1i} \sim N(0, \sigma^2)$$
$$e_{ij} \sim N(0, \sigma^2)$$

- Modelling central tendency
- Response (y_{ij}) is a sum of intercept (β_0) , slopes $(\beta_1, \beta_2, ...)$, random unit intercepts (μ_{0i}) , random unit slopes (μ_{1i}) , and error (e_{ij})
- Error, random intercepts, and random slopes are assumed to be normally distributed around zero

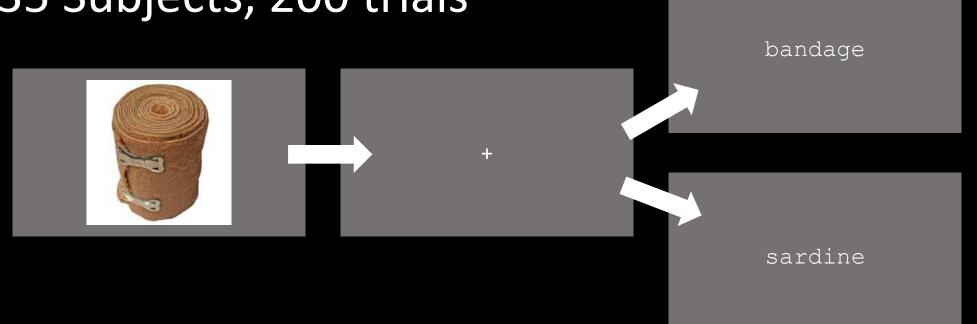
Linear Mixed Effects Models

lmer(y ~ pred + (pred | rand_unit))

- Modelling central tendency
- Response (y) is a sum of intercept (implicit), slopes (pred), random unit intercepts (pred || rand_unit), random unit slopes (pred | rand_unit), and error (implicit)
- Error, random intercepts, and random slopes are assumed to be normally distributed around zero

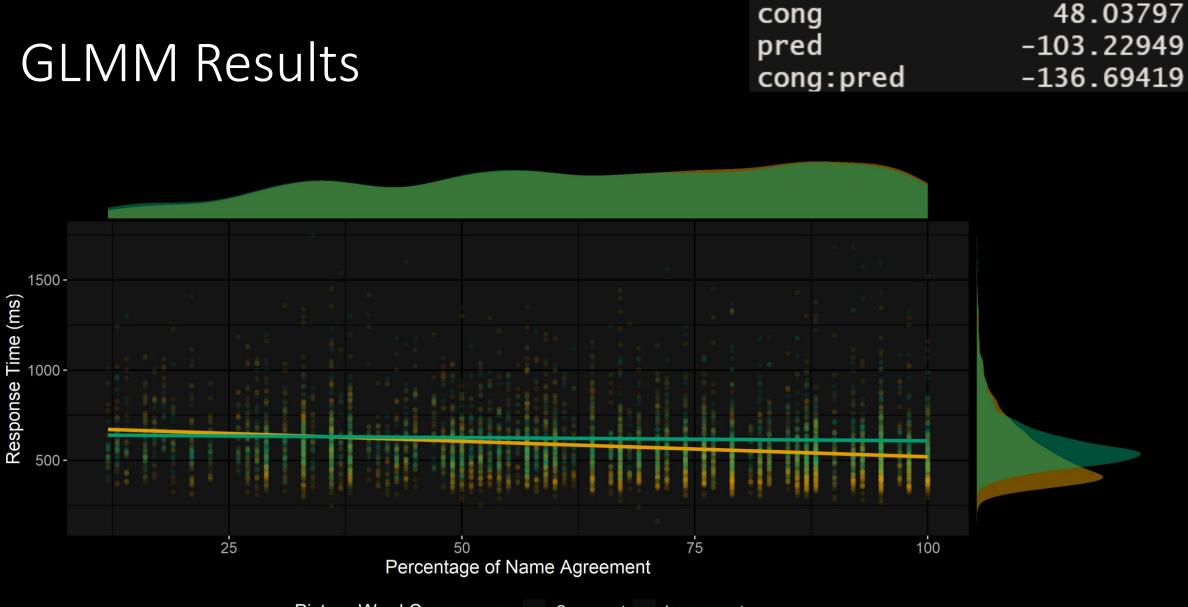
Example Non-Gaussian Data: RT

- 2AFC: does the word match the picture?
- Congruency (2) x Predictability (12% 100%)
- •35 Subjects, 200 trials



Gamma Family GLMM

```
m glmer <- glmer(
   rt ~ cong * pred +
        (cong * pred | subj) +
        (cong | image) +
        (1 \mid word),
   family = Gamma(identity),
   control = glmerControl(
        optimizer = "bobyqa",
        optCtrl = list(maxfun = 2e5)
```



(Intercept)

667.69541

Picture-Word Congruency — Congruent — Incongruent

summary(m_glmer)

Random effects:					
Groups	Name	Variance	Std.Dev.	Corr	
word	(Intercept)	2.337e+02	15.2870		
image	(Intercept)	4.695e+02	21.6688		
	cong	1.048e+03	32.3778	0.74	
subj	(Intercept)	2.606e+03	51.0471		
	cong	1.940e+03	44.0418	0.47	
	pred	1.922e+03	43.8369	-0.60 -0.51	
	cong:pred	2.793e+03	52.8472	-0.56 -0.87 0.61	
Residual		4.959e-02	0.2227		
Number of	obs: 6576, g	groups: wo	ord, 400;	image, 200; subj, 35	

ranef(m_glmer)

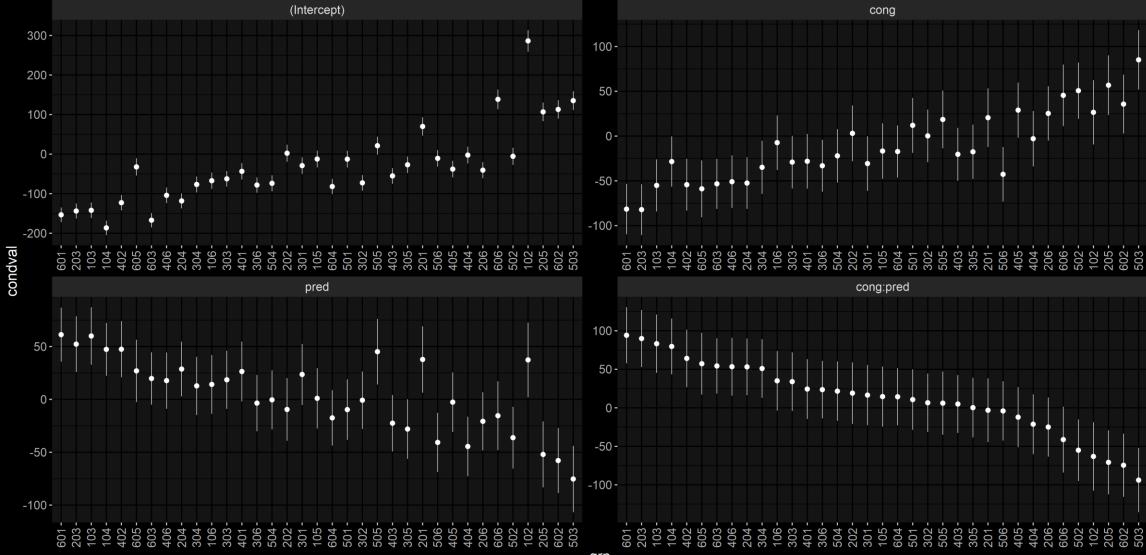
ranef(m_glmer)	list [3] (S3: ranef.mer)	List of length 3
🗢 word	list [400 x 1] (S3: data.frame)	A data.frame with 400 rows and 1 column
(Intercept)	double [400]	3.1423 6.9309 14.3444 1.4099 -0.0101 -0.6390
🗢 image	list [200 x 2] (S3: data.frame)	A data.frame with 200 rows and 2 columns
(Intercept)	double [200]	13.17 18.08 -20.21 45.67 -8.16 3.65
cong	double [200]	14.10 27.02 -27.14 64.37 -21.78 -2.86
🗢 subj	list [35 x 4] (S3: data.frame)	A data.frame with 35 rows and 4 columns
(Intercept)	double [35]	286.4 -142.0 -186.4 -12.4 -67.2 69.9
cong	double [35]	26.52 -55.09 -28.47 -16.70 -7.34 20.52
pred	double [35]	37.3 60.0 47.3 1.0 14.2 37.8
cong:pred	double [35]	-63.15 83.25 79.68 14.62 35.09 -3.13

m_glmer %>% ranef() %>% as.data.frame()

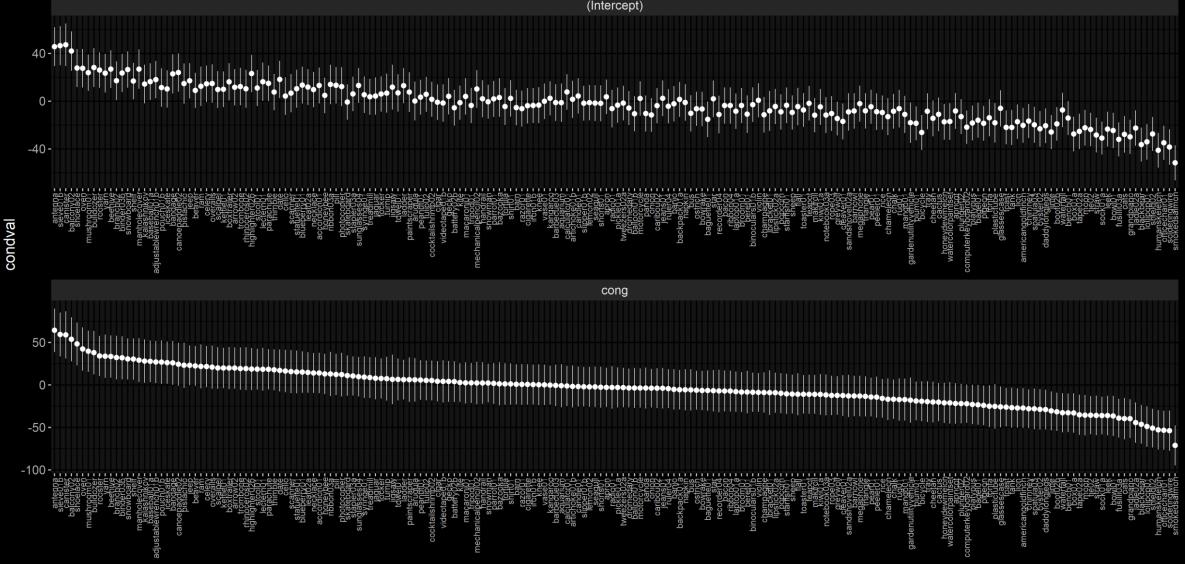
^	grpvar 🗘	term [‡]	grp 🗘	condval 🗘	condsd 🗘
1	word	(Intercept)	accordion	3.14226248	14.48676
2	word	(Intercept)	ammunition	6.93087607	14.04188
3	word	(Intercept)	antenna	14.34436983	14.63559
4	word	(Intercept)	antler	1.40993136	13.89485
5	word	(Intercept)	apricot	-0.01013456	13.88430
6	word	(Intercept)	apron	-0.63898414	14.43003
7	word	(Intercept)	aquarium	-0.19911474	14.62180
8	word	(Intercept)	arrow	4.43943539	14.51931
9	word	(Intercept)	artery	-7.22261749	13.95952
10		(Internet)		0.20567540	4455045

```
ranef(m glmer) %>%
as tibble() %>%
 filter(grpvar == "subj") %>%
mutate(grp = fct reorder2(grp, term, condval)) %>%
qqplot(aes(
   x = qrp, y = condval,
   ymin = condval - condsd,
   ymax = condval + condsd
 )) +
 geom pointrange(size=0.25) +
 facet wrap(vars(term), scales="free", nrow=2)
```

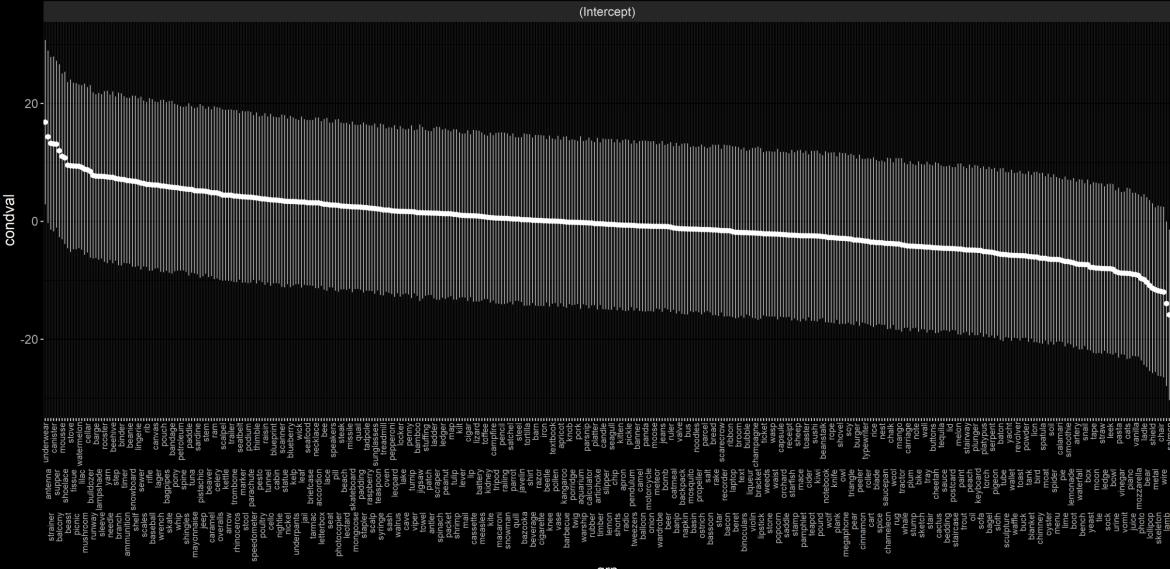
GLMM Results – Random Effects – Subject

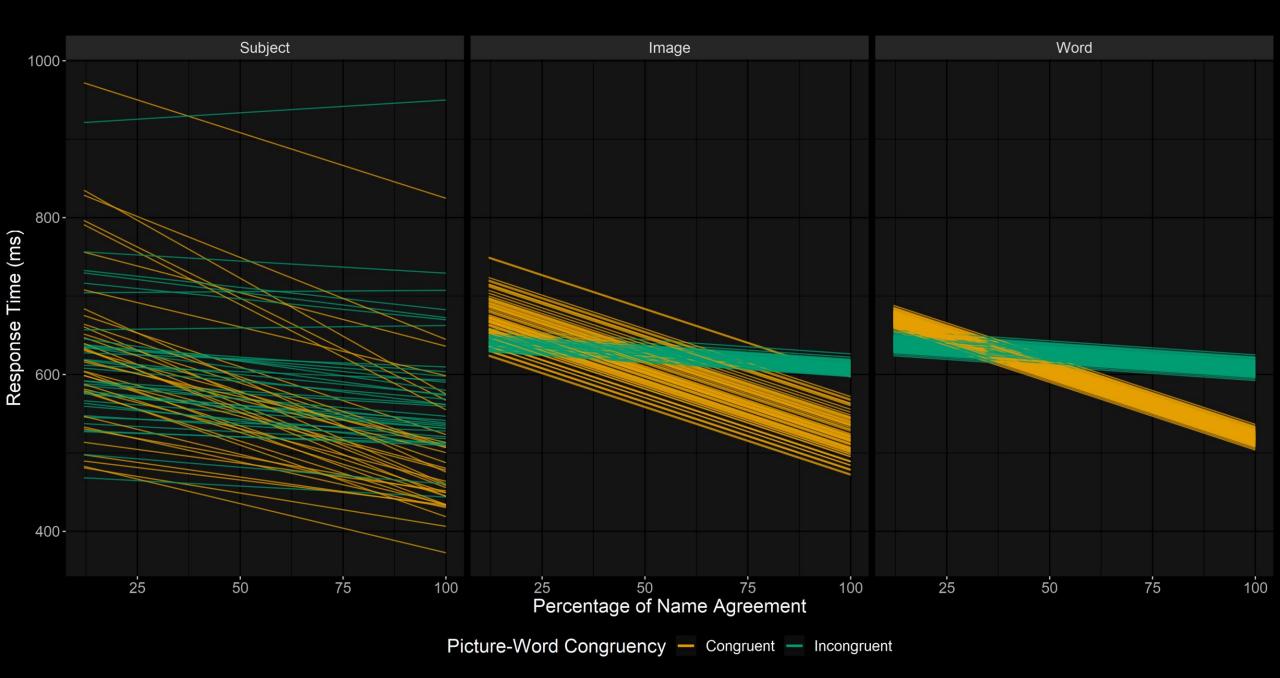


GLMM Results – Random Effects – Image



GLMM Results – Random Effects – Word

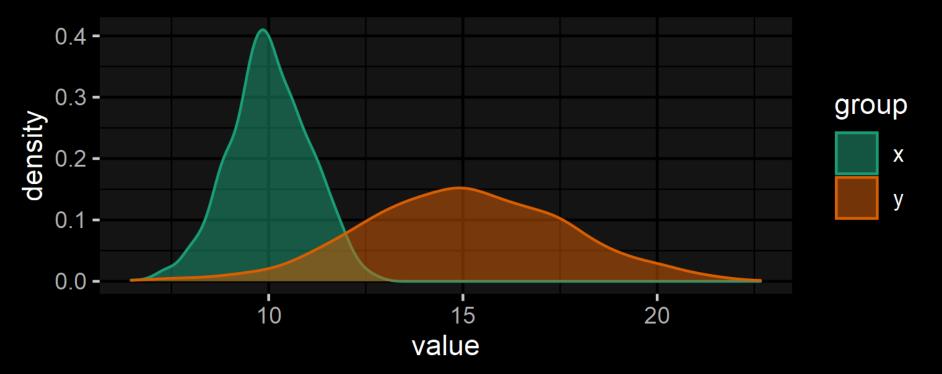




Estimating Distributional Parameters in Hierarchical Models

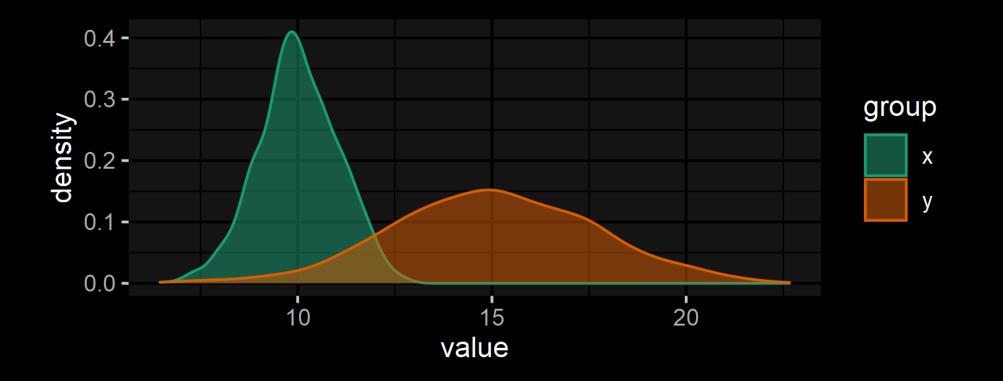
What if Meaningful Effects on Variance?

- All glm variants model single parameters (i.e. central tendency)
- What if your effect looks like this?



What if Meaningful Effects on Variance?

- Mu is higher F(1, 1998) = 3237, *p*<.001
- Sigma is higher Levene's F(1, 1998) = 550, p<.001



Assumption-free Distribution Comparison

• Within a single model?

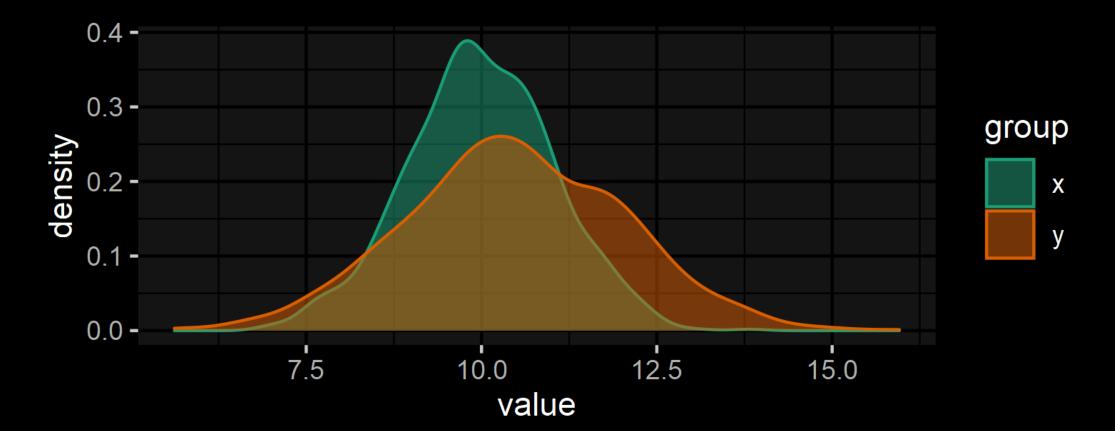
• Assumption free distribution comparison (e.g. Kolmogorov–Smirnov) could be one approach!

• Overlapping index (Pastore & Calcagni, 2019) from 0 (no overlap) to 1 (identical distribution)

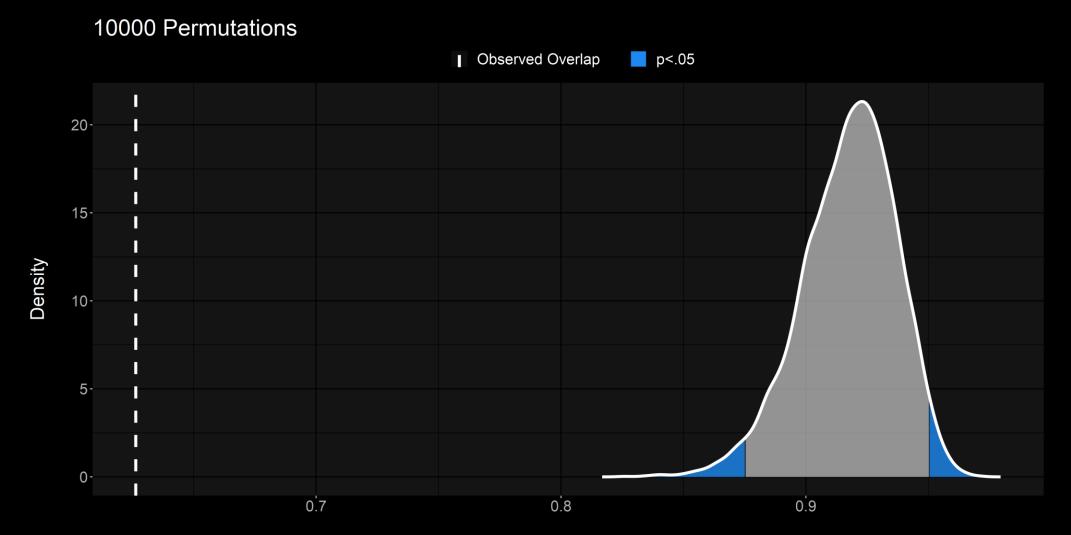
Assumption-free Distribution Comparison

x <- rnorm(1000, 10, 1),

y <- rnorm(1000, 10.5, 1.5)

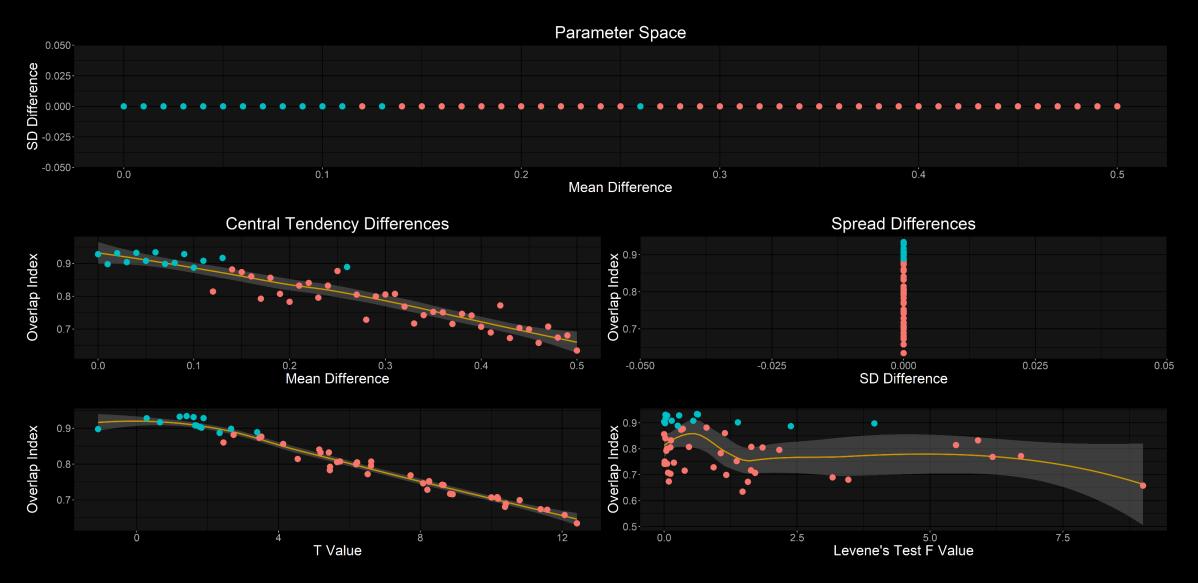


Assumption-free Distribution Comparison

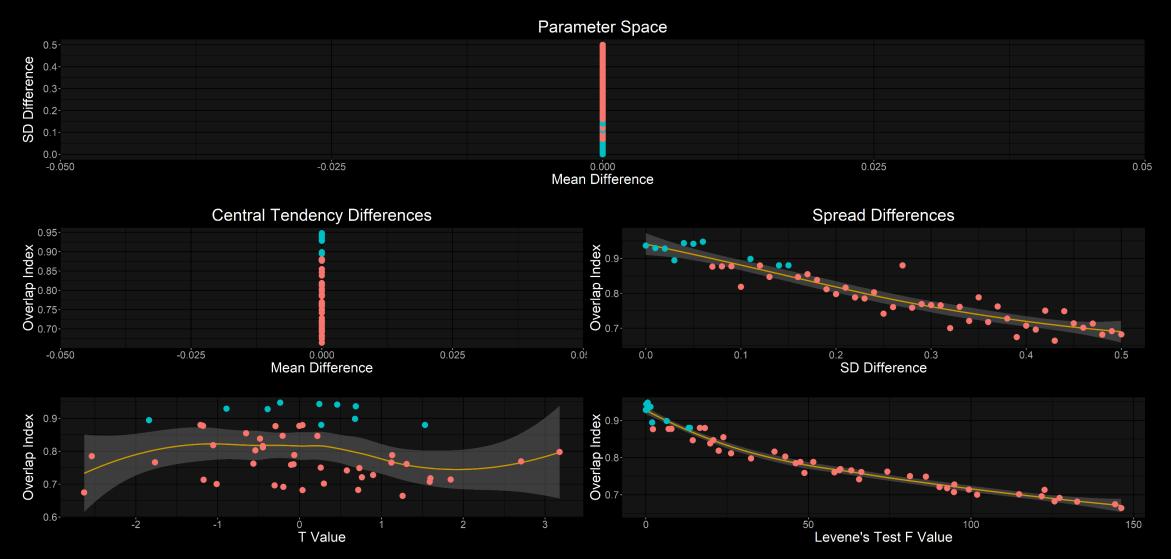


Overlap Value

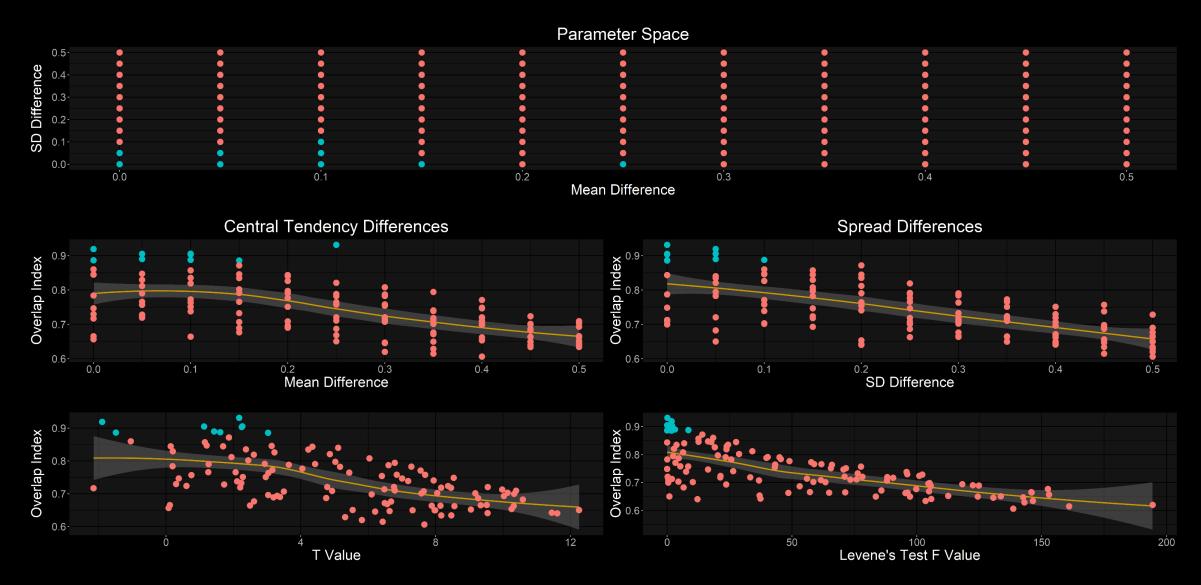
Overlap Index Mu * Sigma Parameter Space



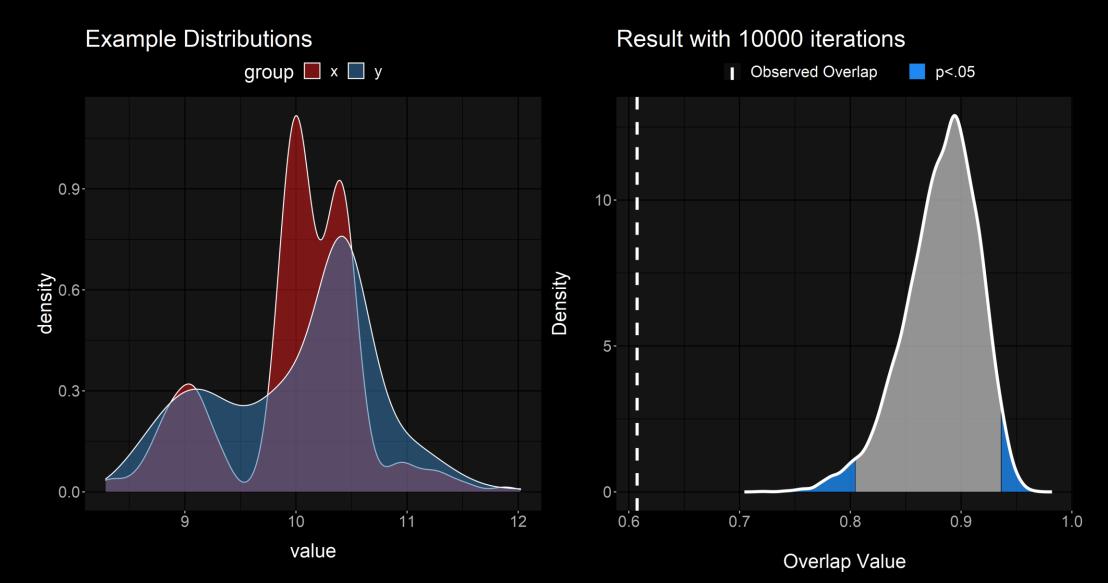
Overlap Index Mu * Sigma Parameter Space



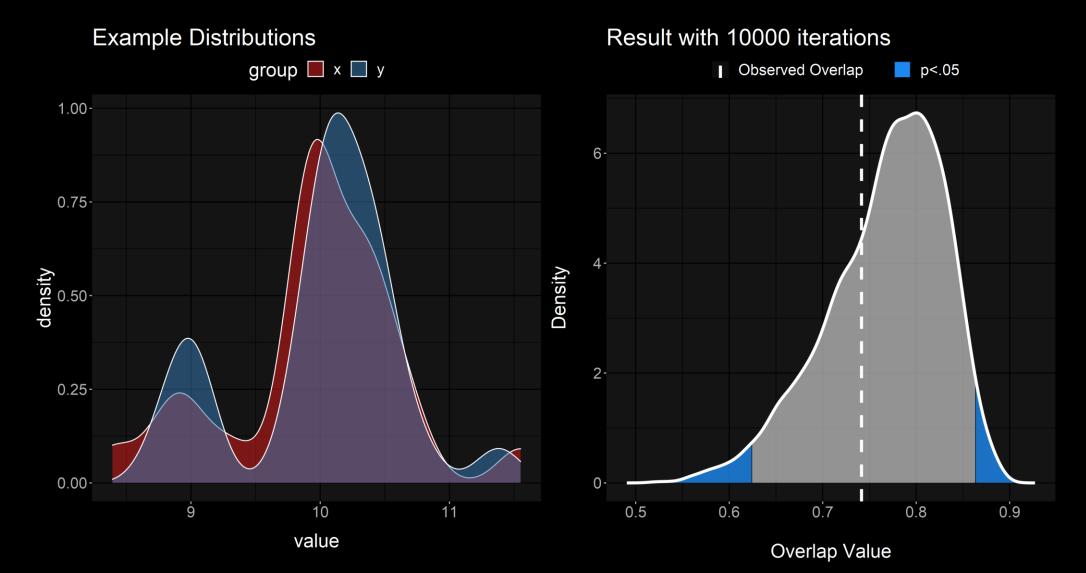
Overlap Index Mu * Sigma Parameter Space



Weirder Distribution Example



Weirder Distribution Example



Summary so far

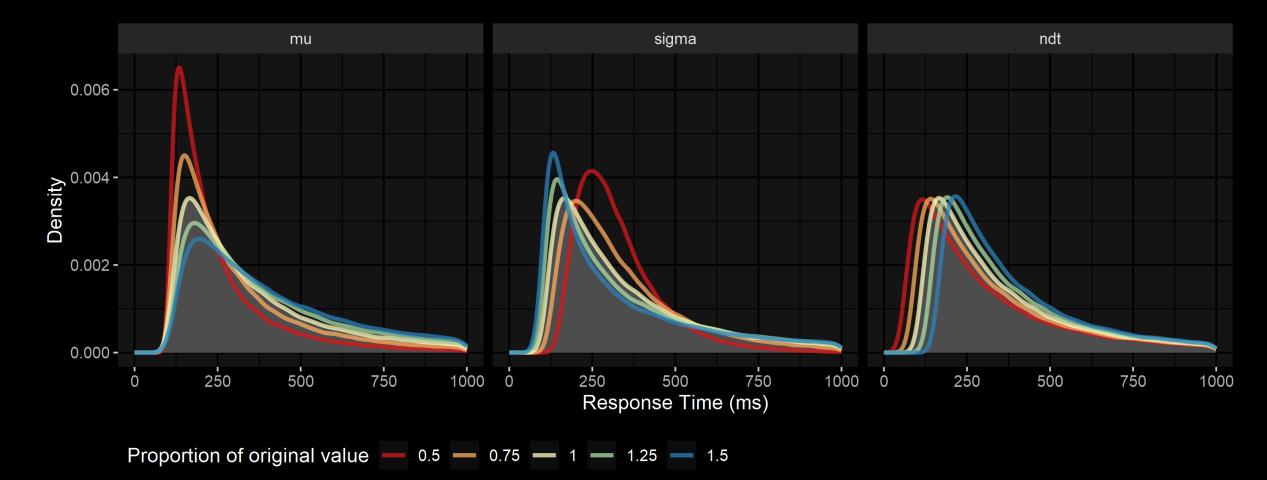
- Assumption-free approaches are flexible but don't allow us to test/make any specific predictions
- Equivalent of shrugging and saying "yeah idk probs something going on there" (though useful for very weird distributions)
- Explicitly modelling multiple parameters of an assumed distribution can give us more meaningful info

Distributional Parameters in brms

```
brm(
    bf(
         dv ~ Intercept + iv + (iv | rand unit),
         sigma ~ Intercept + iv + (iv | rand unit)
    ),
    control = list(
         adapt delta = 0.999,
         max treedepth = 12
    ),
    sample all pars = TRUE
```

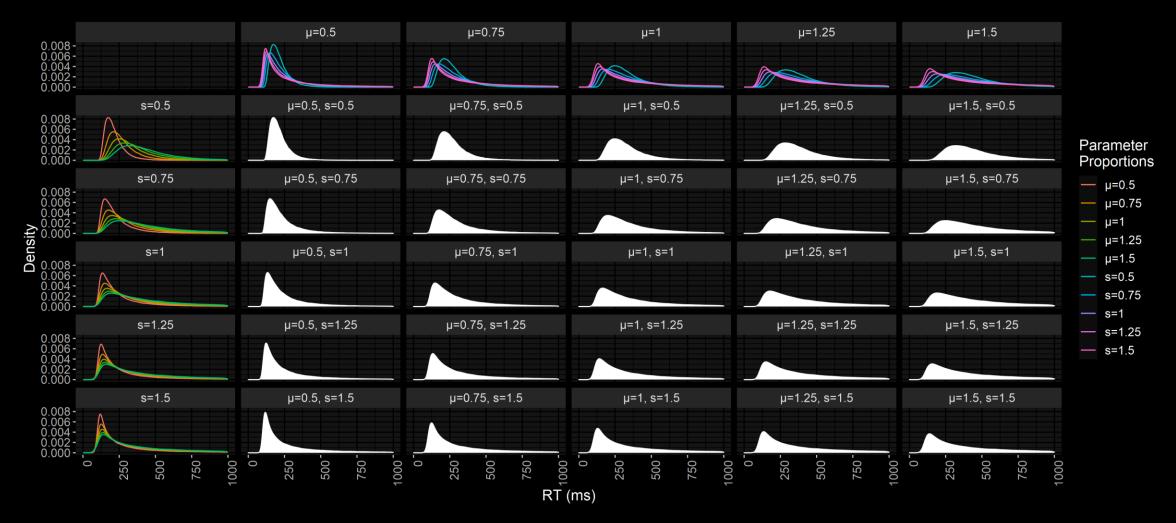
Shifted Log-Normal Distribution

Proportional adjustment of a shifted log-normal distribution's parameters, where the central distribution has the parameters: mu = 200, sigma = 3, delta (ndt) = 100



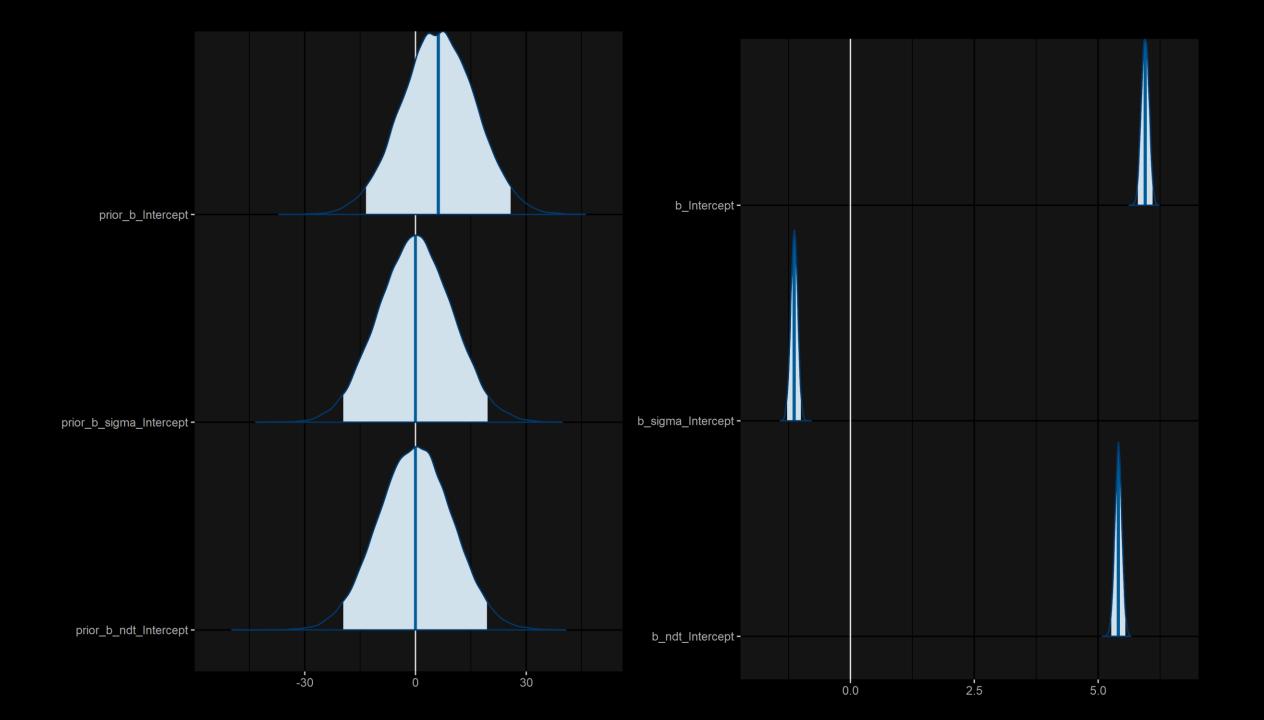
Shifted Log-Normal Distribution

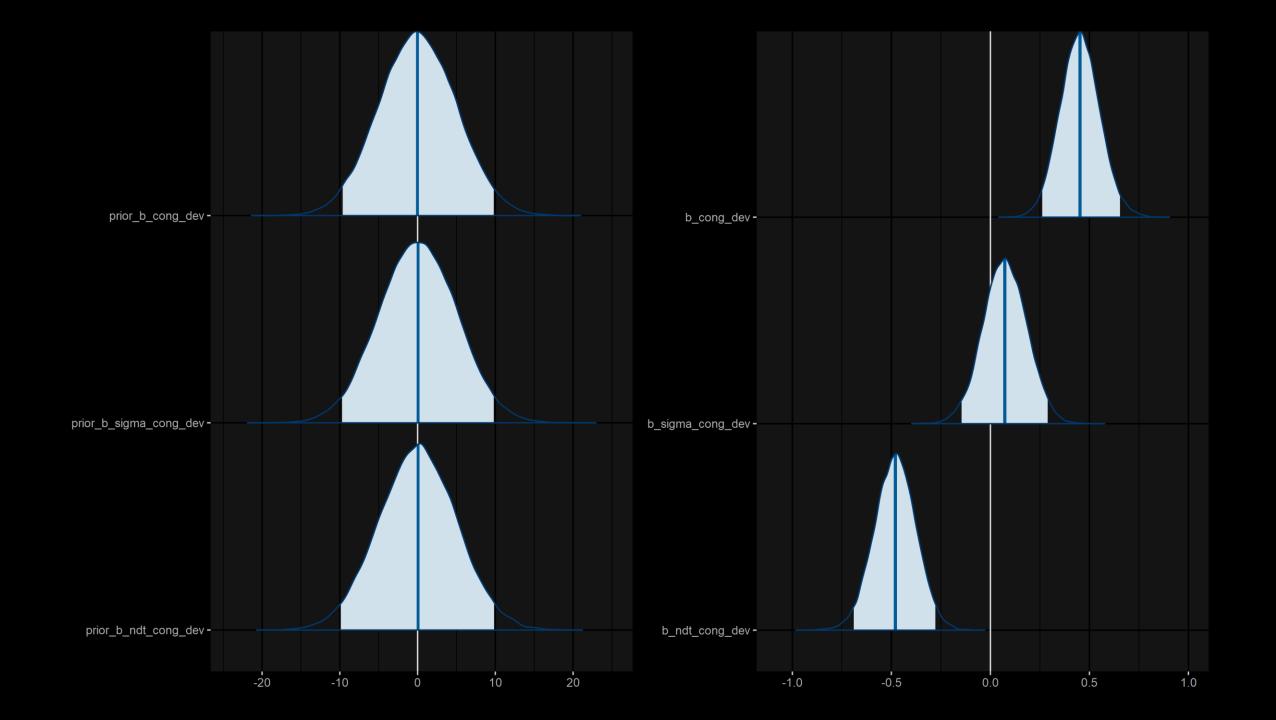
Proportional adjustment of mu and sigma in a shifted log-normal distribution, where the central distribution has the parameters: mu = 200, sigma = 3

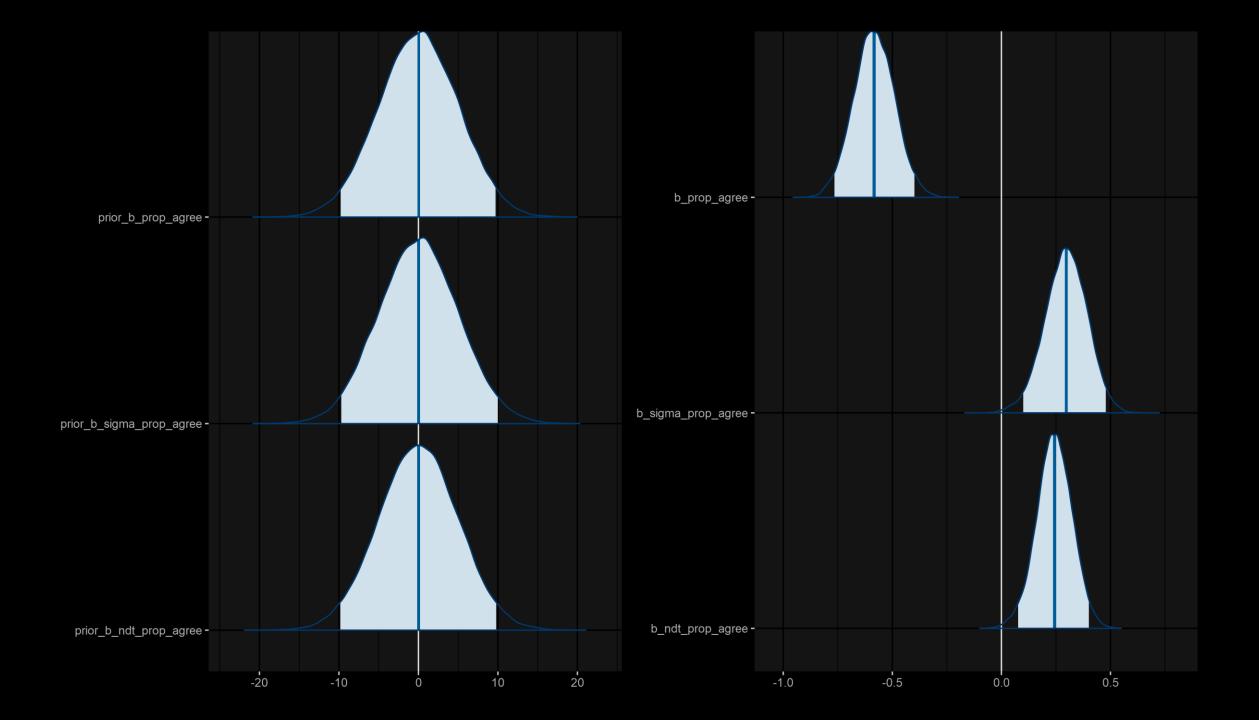


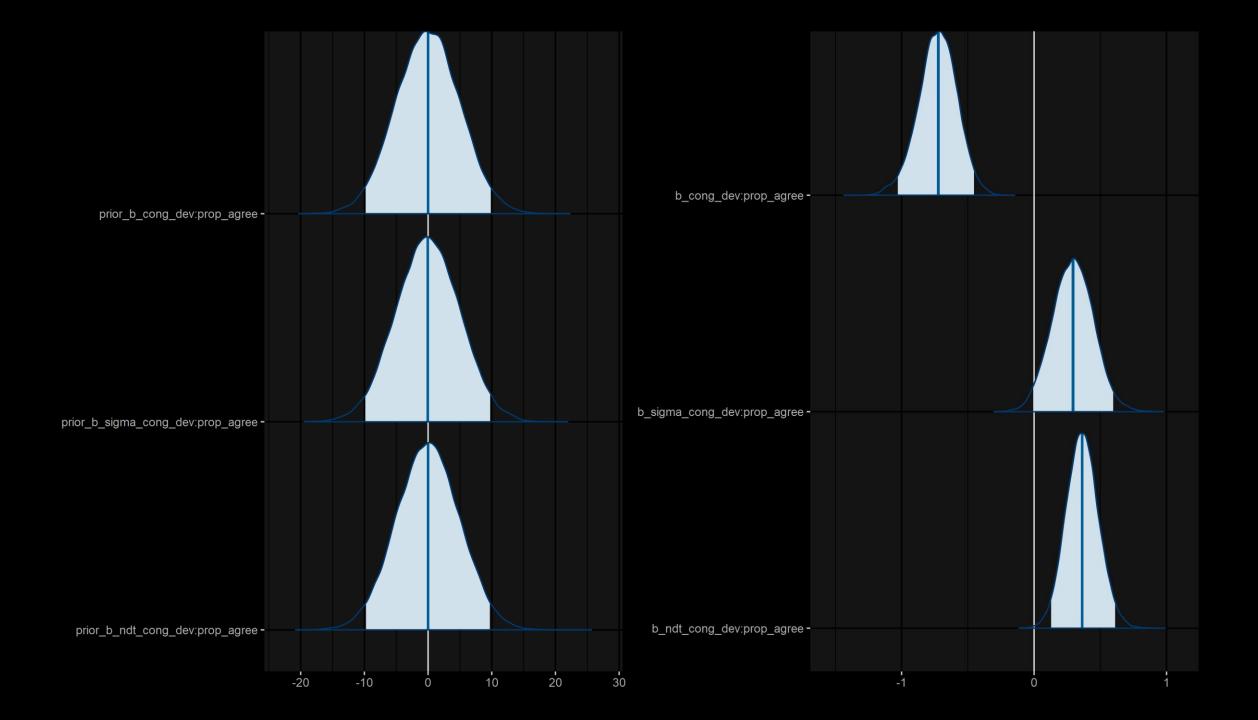
Bayesian Shifted Log-Normal Mixed Effects Model with Distributional Parameters

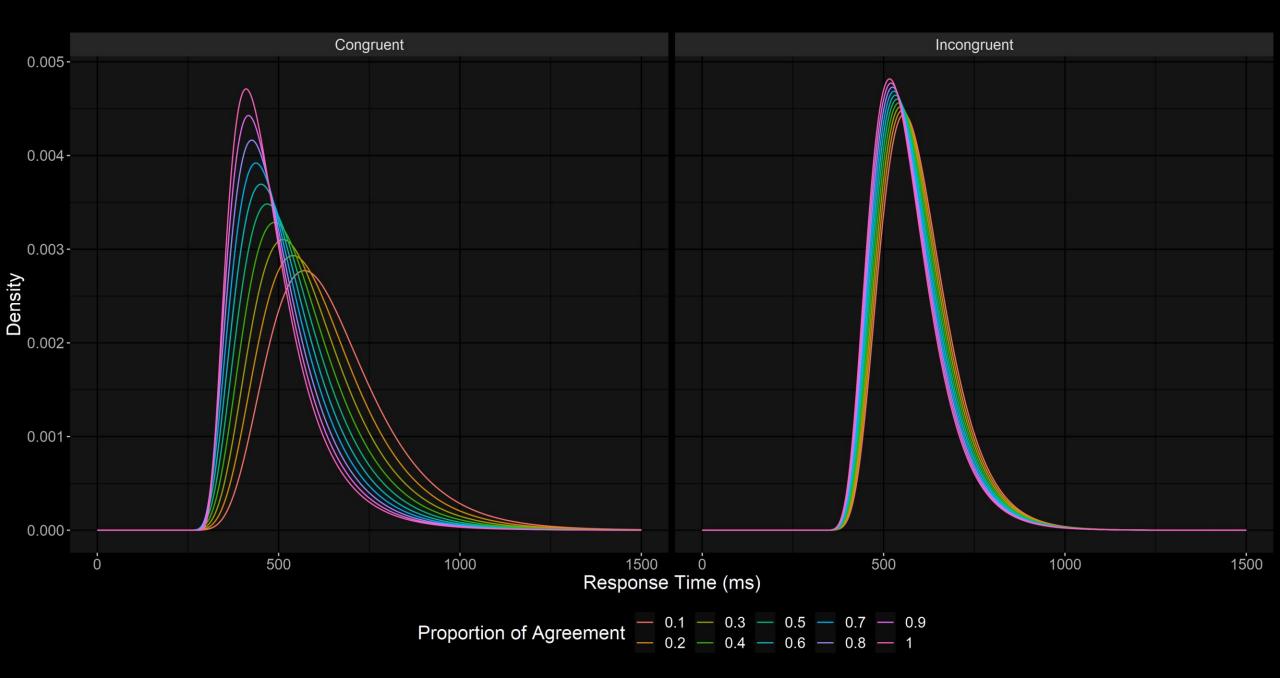
```
brms::bf(
     rt ~ Intercept + cong * pred +
            (cong * pred | subj) +
            (cong | image) +
            (1 \mid word),
     sigma ~ rt ~ Intercept + cong * pred +
            (cong * pred | subj) +
            (cong | image) +
            (1 \mid word),
     ndt ~ rt ~ Intercept + cong * pred +
            (cong * pred | subj) +
            (cong | image) +
            (1 | word)
```

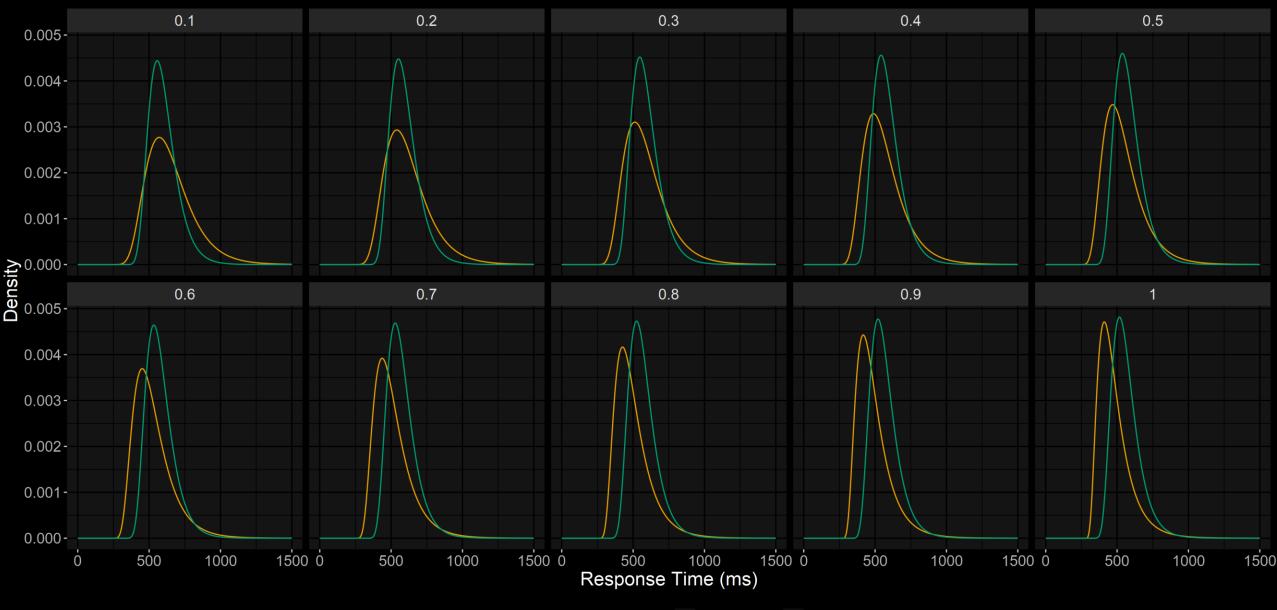












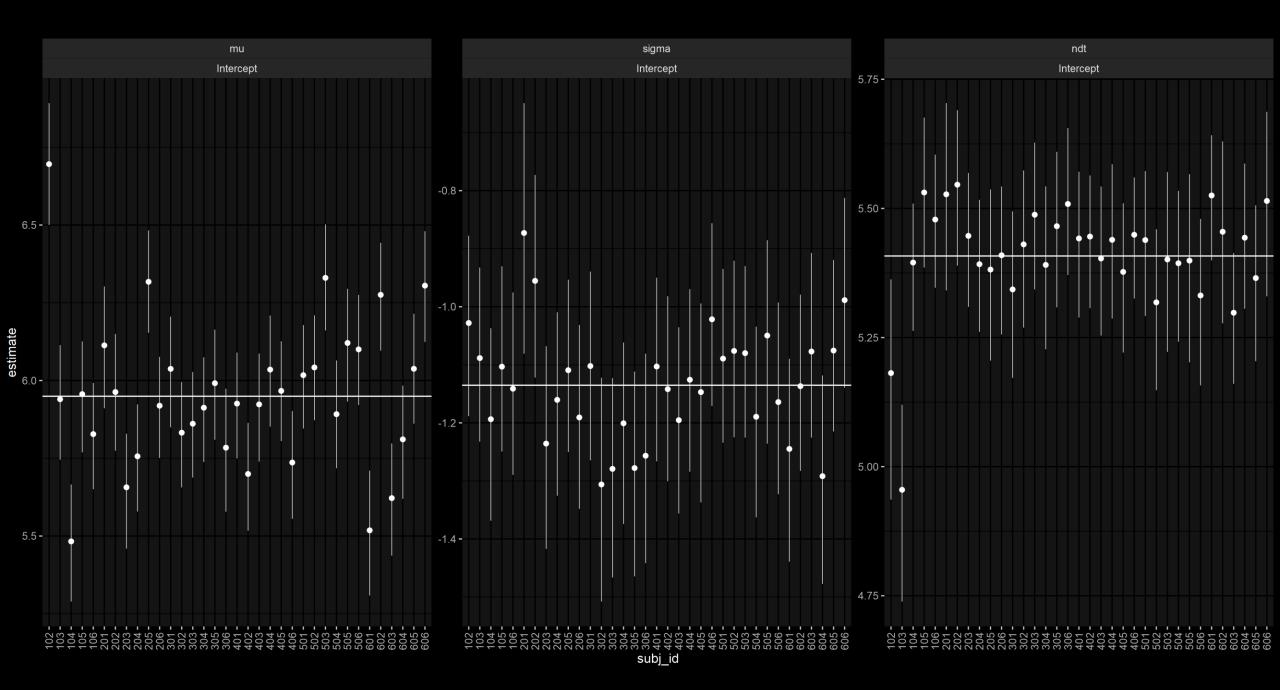
Picture-Word Congruency — Congruent — Incongruent

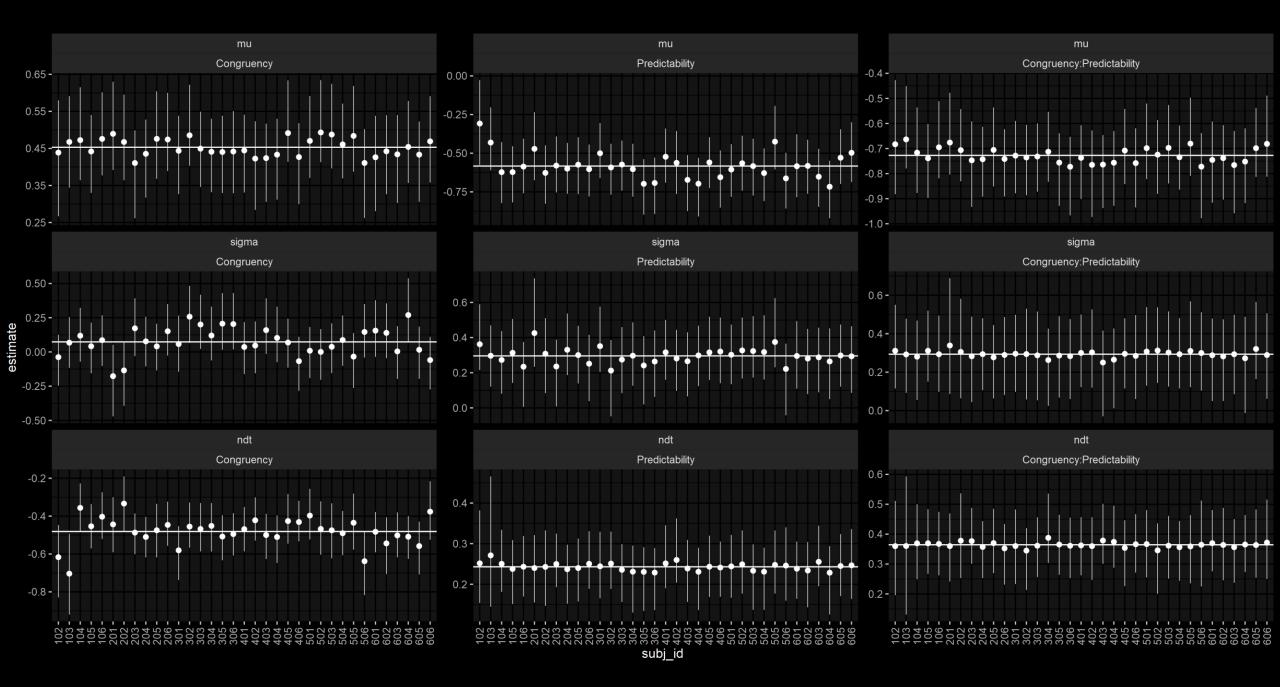
Bayesian Results – Random Effects

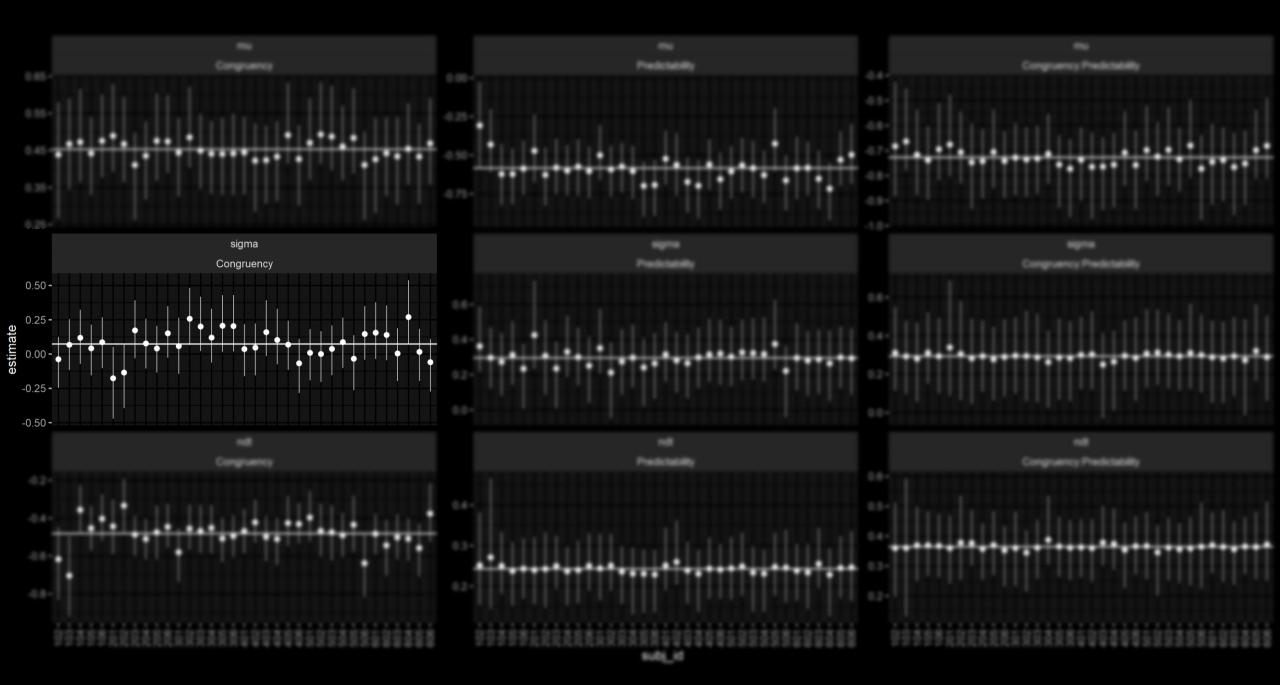
ranef(m bme)

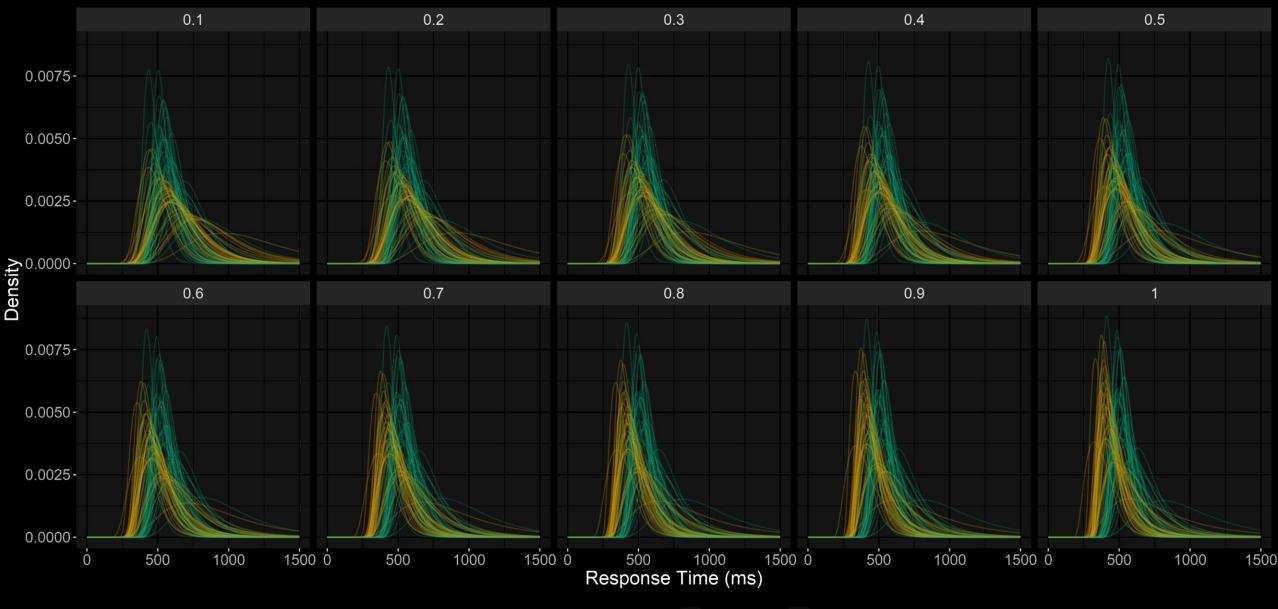
ᅙ ranef(m_bme)	list [3]	List of length 3
image	double [200 x 4 x 6]	0.068645 0.105955 -0.043636 0.206602 -0.007710 0.023579 0.060256 0.059649
string	double [400 x 4 x 3]	0.003315 0.011355 0.017058 0.006073 0.004984 -0.004099 0.030242 0.030648
subj_id	double [35 x 4 x 12]	0.746325 -0.009589 -0.466826 0.006702 -0.121838 0.163541 0.099576 0.095293

ID (e.g. subj_01, subj_02...) * value (est, err, Q2.5, Q97.5) * fixed parameter









Picture-Word Congruency — Congruent — Incongruent

Caveats

 Computationally intensive if using noninformative priors for complex hierarchical formulae

 Have to avoid temptation to try over-infer about mechanisms unless using more cognitively informed models (e.g. drift diffusion)

Summary

Hierarchical models with maximal structures for distributional parameters are a robust and appropriate way of looking at or accounting for subject/item/etc variability in fixed effects when you're interested in more than central tendency.

But, if you *can* assume no systematic differences in distributional parameters, GLMMs will suffice (and save you a lot of time and effort)!