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in Hierarchical Models



Linear Models

• Modelling central tendency

• Response (𝑦𝑖𝑗) is a sum of intercept (𝛽0), slopes (𝛽1, 𝛽2, …), and error (𝑒𝑖𝑗)

• Error is assumed to be normally distributed around zero

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑋𝑖𝑗 + 𝑒𝑖𝑗
𝑒𝑖𝑗 ∼ 𝑁(0, σ2)



Linear Models

• Modelling central tendency

• Response (y) is a sum of intercept (implicit), slopes (pred), and error 
(implicit)

• Error is assumed to be normally distributed around zero

lm(y ~ pred)



Linear Mixed Effects Models

• Modelling central tendency

• Response (𝑦𝑖𝑗) is a sum of intercept (𝛽0), slopes (𝛽1, 𝛽2, …), random unit 
intercepts (μ0𝑖), random unit slopes (μ1𝑖), and error (𝑒𝑖𝑗)

• Error, random intercepts, and random slopes are assumed to be normally 
distributed around zero

𝑦𝑖𝑗 = 𝛽0 + μ0𝑖 + (𝛽1 + μ1𝑖)𝑋𝑖𝑗 + 𝑒𝑖𝑗
μ0𝑖 ∼ 𝑁(0, σ2)
μ1𝑖 ∼ 𝑁(0, σ2)
𝑒𝑖𝑗 ∼ 𝑁(0, σ2)



Linear Mixed Effects Models

• Modelling central tendency
• Response (y) is a sum of intercept (implicit), slopes (pred), random unit 

intercepts (pred || rand_unit), random unit slopes (pred | rand_unit), and 
error (implicit)

• Error, random intercepts, and random slopes are assumed to be normally 
distributed around zero

lmer(y ~ pred + (pred | rand_unit))



Example Non-Gaussian Data: RT

•2AFC: does the word match the picture?

•Congruency (2) x Predictability (12% – 100%)

•35 Subjects, 200 trials

+

bandage

sardine



Gamma Family GLMM

m_glmer <- glmer(

rt ~ cong * pred +

(cong * pred | subj) +

(cong | image) +

(1 | word),

family = Gamma(identity),

control = glmerControl(

optimizer = “bobyqa”,

optCtrl = list(maxfun = 2e5)

)

)



GLMM Results



GLMM Results – Random Effects

summary(m_glmer)



GLMM Results – Random Effects

ranef(m_glmer)



GLMM Results – Random Effects

m_glmer %>% ranef() %>% as.data.frame() 



GLMM Results – Random Effects

ranef(m_glmer) %>%

as_tibble() %>%

filter(grpvar == “subj") %>%

mutate(grp = fct_reorder2(grp, term, condval)) %>%

ggplot(aes(

x = grp, y = condval,

ymin = condval - condsd,

ymax = condval + condsd

)) +

geom_pointrange(size=0.25) +

facet_wrap(vars(term), scales="free", nrow=2)



GLMM Results – Random Effects – Subject



GLMM Results – Random Effects – Image



GLMM Results – Random Effects – Word
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What if Meaningful Effects on Variance?

•All glm variants model single parameters
(i.e. central tendency)
•What if your effect looks like this?



What if Meaningful Effects on Variance?

•Mu is higher F(1, 1998) = 3237, p<.001

•Sigma is higher Levene’s F(1, 1998) = 550, p<.001



Assumption-free Distribution Comparison

•Within a single model?

•Assumption free distribution comparison (e.g. 
Kolmogorov–Smirnov) could be one approach!

•Overlapping index (Pastore & Calcagni, 2019) 
from 0 (no overlap) to 1 (identical distribution)



Assumption-free Distribution Comparison
x <- rnorm(1000, 10, 1),

y <- rnorm(1000, 10.5, 1.5)



Assumption-free Distribution Comparison



Overlap Index Mu * Sigma Parameter Space



Overlap Index Mu * Sigma Parameter Space



Overlap Index Mu * Sigma Parameter Space



Weirder Distribution Example



Weirder Distribution Example



Summary so far

• Assumption-free approaches are flexible but don’t allow 
us to test/make any specific predictions

• Equivalent of shrugging and saying “yeah idk probs 
something going on there” (though useful for very weird 
distributions)

• Explicitly modelling multiple parameters of an assumed 
distribution can give us more meaningful info



Distributional Parameters in brms

brm(

bf(

dv ~ Intercept + iv + (iv | rand_unit),

sigma ~ Intercept + iv + (iv | rand_unit) 

),

control = list(

adapt_delta = 0.999,

max_treedepth = 12

),

sample_all_pars = TRUE

)



Shifted Log-Normal Distribution



Shifted Log-Normal Distribution



Bayesian Shifted Log-Normal Mixed Effects 
Model with Distributional Parameters

brms::bf(

rt ~ Intercept + cong * pred +

(cong * pred | subj) +

(cong | image) +

(1 | word),

sigma ~ rt ~ Intercept + cong * pred +

(cong * pred | subj) +

(cong | image) +

(1 | word),

ndt ~ rt ~ Intercept + cong * pred +

(cong * pred | subj) +

(cong | image) +

(1 | word)

)















ranef(m_bme)

Bayesian Results – Random Effects

ID (e.g. subj_01, subj_02…) * value (est, err, Q2.5, Q97.5) * fixed parameter











Caveats

•Computationally intensive if using non-
informative priors for complex hierarchical 
formulae

•Have to avoid temptation to try over-infer about 
mechanisms unless using more cognitively 
informed models (e.g. drift diffusion)



Summary

Hierarchical models with maximal structures for 
distributional parameters are a robust and 
appropriate way of looking at or accounting for 
subject/item/etc variability in fixed effects when 
you’re interested in more than central tendency.

But, if you can assume no systematic differences in 
distributional parameters, GLMMs will suffice (and 
save you a lot of time and effort)!


