Edit the code chunks below and knit the document. You can pipe your objects to glimpse() or print() to display them.

Basic Iteration Functions

Question 1

Set the vector v1 equal to the following: 11, 13, 15, 17, 19, …, 99, 101 (use a function; don’t just type all the numbers).

v1 <- seq(11, 101, by = 2) %>% print()
##  [1]  11  13  15  17  19  21  23  25  27  29  31  33  35  37
## [15]  39  41  43  45  47  49  51  53  55  57  59  61  63  65
## [29]  67  69  71  73  75  77  79  81  83  85  87  89  91  93
## [43]  95  97  99 101

Question 2

Set the vector v2 equal to the following: “A” “A” “B” “B” “C” “C” “D” “D” “E” “E” (note the letters are all uppercase).

v2 <- rep(LETTERS[1:5], each = 2) %>% print()
##  [1] "A" "A" "B" "B" "C" "C" "D" "D" "E" "E"

Question 3

Set the vector v3 equal to the words “dog” 10 times, “cat” 9 times, “fish” 6 times, and “ferret” 1 time.

pets <- c("dog", "cat", "fish", "ferret")
pet_n <- c(10, 9, 6, 1)
v3 <- rep(pets, times = pet_n) %>% print()
##  [1] "dog"    "dog"    "dog"    "dog"    "dog"    "dog"   
##  [7] "dog"    "dog"    "dog"    "dog"    "cat"    "cat"   
## [13] "cat"    "cat"    "cat"    "cat"    "cat"    "cat"   
## [19] "cat"    "fish"   "fish"   "fish"   "fish"   "fish"  
## [25] "fish"   "ferret"

map and apply functions

Question 4a

Use apply() or map() functions to create a list of 11 vectors of 100 numbers sampled from 11 random normal distributions with means of 0 to 1.0 (in steps of 0.1) and SDs of 1. Assign this list to the object samples. Set the seed to 321 before you generate the random numbers to ensure reproducibility.

set.seed(321)
mu <- seq(0, 1, 0.1)
samples <- map(mu, rnorm, n = 100)

# alternatively
samples <- lapply(mu, rnorm, n = 100)

Question 4b

Use apply() or map() functions to create a vector of the sample means from the list samples in the previous question.

sample_means <- map_dbl(samples, mean)

## alternatively

sample_means <- sapply(samples, mean) %>% print()
##  [1] 0.08304484 0.21226580 0.16840128 0.12930317 0.53216771
##  [6] 0.40842952 0.72589166 0.63446436 0.81040369 1.02317536
## [11] 0.91126680

Custom functions

Question 5a

Write a function called my_add that adds two numbers (x and y) together and returns the results.

my_add <- function(x, y) {
  x+y
}

Question 5b

Create a vector testing your function my_add. Every item in the vector should evaluate to TRUE if your function is working correctly.

my_add_test <- c(
  my_add(1, 2) == 3,
  my_add(10, 20) == 30,
  my_add(-1, -3) == -4,
  my_add(0.2, 0.334) == 0.534
) %>% print()
## [1] TRUE TRUE TRUE TRUE

Error handling

Question 6

Copy the function my_add above and add an error message that returns “x and y must be numbers” if x or y are not both numbers.

my_add <- function(x, y) {
  if (!is.numeric(x) | !is.numeric(y)) stop("x and y must be numbers")
  x+y
}

Building up a custom function

Question 7

Create a tibble called dat that contains 20 rows and three columns: id (integers 101 through 120), pre and post (both 20-item vectors of random numbers from a normal distribution with mean = 0 and sd = 1). Set seed to 90210 to ensure reproducible values.

set.seed(90210)

dat <- tibble(
  id = 101:120,
  pre = rnorm(20),
  post = rnorm(20)
) %>% print()
## # A tibble: 20 x 3
##       id     pre   post
##    <int>   <dbl>  <dbl>
##  1   101 -0.444   0.664
##  2   102 -0.515  -1.78 
##  3   103  1.18   -1.21 
##  4   104  1.57   -1.40 
##  5   105  0.0934  1.83 
##  6   106  0.165  -1.43 
##  7   107 -0.339  -2.17 
##  8   108 -0.780  -0.789
##  9   109  0.386   0.172
## 10   110 -1.83   -1.24 
## 11   111 -0.544   0.319
## 12   112 -0.138  -1.63 
## 13   113  0.296   0.395
## 14   114 -0.434  -1.85 
## 15   115 -0.502  -2.53 
## 16   116  0.113   0.279
## 17   117 -0.781   0.824
## 18   118  0.916  -0.622
## 19   119  0.179   0.928
## 20   120  0.0141  0.266

Question 8

Run a two-tailed, paired-samples t-test comparing pre and post. (check the help for t.test)

t <- t.test(dat$post, dat$pre, paired = TRUE) %>% print()
## 
##  Paired t-test
## 
## data:  dat$post and dat$pre
## t = -1.5392, df = 19, p-value = 0.1402
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.1299798  0.1722842
## sample estimates:
## mean of the differences 
##              -0.4788478

Question 9

Use broom::tidy to save the results of the t-test in question 8 in a table called stats.

stats <- t.test(dat$post, dat$pre, paired = TRUE) %>%
  broom::tidy() %>%
  print()
## # A tibble: 1 x 8
##   estimate statistic p.value parameter conf.low conf.high
##      <dbl>     <dbl>   <dbl>     <dbl>    <dbl>     <dbl>
## 1   -0.479     -1.54   0.140        19    -1.13     0.172
## # … with 2 more variables: method <chr>, alternative <chr>

Question 10

Create a function called report_t that takes a data table as an argument and returns the result of a two-tailed, paired-samples t-test between the columns pre and post in the following format:

“The mean increase from pre-test to post-test was #.###: t(#) = #.###, p = 0.###, 95% CI = [#.###, #.###].”

Hint: look at the function paste0() (simpler) or sprintf() (complicated but more powerful).

NB: Make sure all numbers are reported to three decimal places (except degrees of freedom).

report_t <- function(data) {
  stats <- t.test(data$post, data$pre, paired = TRUE) %>%
    broom::tidy()
  
  diff <- pull(stats, estimate) %>% round(3) 
  t <- pull(stats, statistic) %>% round(3)
  p <- pull(stats, p.value) %>% round(3)
  df <- pull(stats, parameter)
  ci1 <- pull(stats, conf.low) %>% round(3)
  ci2 <- pull(stats, conf.high) %>% round(3)
  
  paste0("The mean increase from pre-test to post-test was ", diff, 
         ": t(", df, ") = ", t, 
         ", p = ", p, 
         ", 95% CI = [", ci1, ", ", ci2, "].")
}
# sprintf() is a complicated function, but can be easier to use in long text strings with a lot of things to replace

report_t <- function(data) {
  stats <- t.test(data$post, data$pre, paired = TRUE) %>%
    broom::tidy()

  sprintf("The mean increase from pre-test to post-test was %.3f: t(%.0f) = %.3f, p = %.3f, 95%% CI = [%.3f, %.3f].",
          pull(stats, estimate), 
          pull(stats, parameter),
          pull(stats, statistic),
          pull(stats, p.value),
          pull(stats, conf.low),
          pull(stats, conf.high)
  )
}

Question 11

Use inline R to include the results of report_t() on the dat data table in a paragraph below.

The mean increase from pre-test to post-test was -0.479: t(19) = -1.539, p = 0.140, 95% CI = [-1.130, 0.172].