We will be running a series of talks, workshops and discussions about
generalised linear mixed models (GLMM). This page will collate links and
resources.
m m m m m m m m m m m m
Schedule
All sessions will be 16:00 to 17:00 via Zoom
Resources
- Learning
Statistical Models Through Simulation in R
- Brysbaert, M. and Stevens, M. (2018) Power Analysis and Effect Size
in Mixed Effects Models: A Tutorial. Journal of Cognition, 1(1): 9,
pp. 1–20, DOI:
10.5334/joc.10
- Probit
vs logit
- Logistic
regression shiny app
- Simulating
binomial data with crossed random factors
- Taylor, J. E., Rousselet, G. A., Scheepers, C., & Sereno, S. C.
(2021, August 3). Rating Norms Should be Calculated from Cumulative Link
Mixed Effects Models. DOI:
10.31234/osf.io/3vgwk
- Lo, S. and Andrews, S. (2015) To transform or not to transform:
using generalized linear mixed models to analyse reaction time data.
Frontiers in Psychology 6:1171. DOI:
10.3389/fpsyg.2015.01171
- Gomila, R. (2021). Logistic or linear? Estimating causal effects of
experimental treatments on binary outcomes using regression analysis.
Journal of Experimental Psychology: General, 150(4), 700–709. DOI:
10.1037/xge0000920
- Knief U, Forstmeier W. (2021). Violating the normality assumption
may be the lesser of two evils. Behav Res Methods. DOI:
10.3758/s13428-021-01587-5
- William H. Ryan, Ellen R. K. Evers, Don A. Moore; Poisson
Regressions: A Little Fishy. Collabra: Psychology 4 January 2021; 7 (1):
27242. DOI:
10.1525/collabra.27242
- Generalized
Linear Madness