References
Bastian, B., Jetten, J., & Ferris, L. J. (2014). Pain as
Social Glue: Shared
Pain Increases Cooperation.
Psychological Science, 25(11), 2079–2085. https://doi.org/10.1177/0956797614545886
Bem, D. J. (2011). Feeling the future: Experimental
evidence for anomalous retroactive influences on cognition and affect.
Journal of Personality and Social Psychology, 100(3),
407–425. https://doi.org/10.1037/a0021524
Bostyn, D. H., Sevenhant, S., & Roets, A. (2018). Of
Mice, Men, and Trolleys:
Hypothetical Judgment Versus
Real-Life Behavior in
Trolley-Style Moral
Dilemmas: Psychological Science, 29(7),
1084–1093. https://doi.org/10.1177/0956797617752640
Brandt, M. J., IJzerman, H., & Blanken, I. (2014). Does
Recalling Moral Behavior
Change the Perception of
Brightness? Social Psychology, 45(3),
246–252. https://doi.org/10.1027/1864-9335/a000191
Bürkner, P.-C. (2017). Brms: An R
Package for Bayesian Multilevel
Models Using Stan. Journal of
Statistical Software, 80(1). https://doi.org/10.18637/jss.v080.i01
Bürkner, P.-C., & Vuorre, M. (2019). Ordinal Regression
Models in Psychology: A
Tutorial. Advances in Methods and Practices in
Psychological Science, 2(1), 77–101. https://doi.org/10.1177/2515245918823199
Christensen, R. H. B. (2023). Ordinal—regression models for ordinal
data. https://CRAN.R-project.org/package=ordinal
Coleman, T. J., Bartlett, J. E., Holcombe, J., Swanson, S. B., Atkinson,
A. R., Silver, C., & Hood, R. (2019). Absorption,
Mentalizing, and Mysticism:
Sensing the Presence of the
Divine. Journal for the Cognitive Science of
Religion, 5(1), 63–84. https://doi.org/10.31234/osf.io/k5fp8
Dawtry, R. J., Sutton, R. M., & Sibley, C. G. (2015). Why
Wealthier People Think
People Are Wealthier, and
Why It Matters: From
Social Sampling to Attitudes to
Redistribution. Psychological Science,
26(9), 1389–1400. https://doi.org/10.1177/0956797615586560
Doorn, J. van, Bergh, D. van den, Böhm, U., Dablander, F., Derks, K.,
Draws, T., Etz, A., Evans, N. J., Gronau, Q. F., Haaf, J. M., Hinne, M.,
Kucharský, Š., Ly, A., Marsman, M., Matzke, D., Gupta, A. R. K. N.,
Sarafoglou, A., Stefan, A., Voelkel, J. G., & Wagenmakers, E.-J.
(2021). The JASP guidelines for conducting and reporting a
Bayesian analysis. Psychonomic Bulletin &
Review, 28(3), 813–826. https://doi.org/10.3758/s13423-020-01798-5
Evans, T. R. (2024). Unethical Behaviour in the
Workplace: A Direct and
Conceptual Replication of Jones
& Kavanagh (1996). https://doi.org/10.31234/osf.io/a2rj9
Flores, R. D., Sanders, C. A., Duan, S. X., Bishop-Chrzanowski, B. M.,
Oyler, D. L., Shim, H., Clocksin, H. E., Miller, A. P., & Merkle, E.
C. (2022). Before/after Bayes: A comparison of
frequentist and Bayesian mixed-effects models in applied
psychological research. British Journal of Psychology,
113(4), 1164–1194. https://doi.org/10.1111/bjop.12585
Gambarota, F., & Altoè, G. (2024). Ordinal regression models made
easy: A tutorial on parameter interpretation, data
simulation and power analysis. International Journal of
Psychology, 59(6), 1263–1292. https://doi.org/10.1002/ijop.13243
Harms, C., & Lakens, D. (2018). Making ’null effects’ informative:
Statistical techniques and inferential frameworks. Journal of
Clinical and Translational Research, 3(Suppl 2), 382–393.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412612/
Heino, M. T. J., Vuorre, M., & Hankonen, N. (2018). Bayesian
evaluation of behavior change interventions: A brief introduction and a
practical example. Health Psychology and Behavioral Medicine,
6(1), 49–78. https://doi.org/10.1080/21642850.2018.1428102
Jakobsen, J. C., Gluud, C., Wetterslev, J., & Winkel, P. (2017).
When and how should multiple imputation be used for handling missing
data in randomised clinical trials – a practical guide with flowcharts.
BMC Medical Research Methodology, 17(1), 162. https://doi.org/10.1186/s12874-017-0442-1
James, E. L., Bonsall, M. B., Hoppitt, L., Tunbridge, E. M., Geddes, J.
R., Milton, A. L., & Holmes, E. A. (2015). Computer
Game Play Reduces
Intrusive Memories of
Experimental Trauma via
Reconsolidation-Update
Mechanisms: Psychological Science, 26(8),
1201–1215. https://doi.org/10.1177/0956797615583071
Jones, G. E., & Kavanagh, M. J. (1996). An experimental examination
of the effects of individual and situational factors on unethical
behavioral intentions in the workplace. Journal of Business
Ethics, 15, 511–523.
Knief, U., & Forstmeier, W. (2021). Violating the normality
assumption may be the lesser of two evils. Behavior Research
Methods, 53(6), 2576–2590. https://doi.org/10.3758/s13428-021-01587-5
Kruschke, J. K. (2015). Doing Bayesian
Data Analysis: A
Tutorial with R, JAGS, and
Stan. (2nd ed.). Academic Press.
Kruschke, J. K. (2021). Bayesian Analysis
Reporting Guidelines. Nature Human
Behaviour, 5(10), 1282–1291. https://doi.org/10.1038/s41562-021-01177-7
Kruschke, J. K., & Liddell, T. M. (2018a). Bayesian data analysis
for newcomers. Psychonomic Bulletin & Review,
25(1), 155–177. https://doi.org/10.3758/s13423-017-1272-1
Kruschke, J. K., & Liddell, T. M. (2018b). The Bayesian
New Statistics: Hypothesis
testing, estimation, meta-analysis, and power analysis from a
Bayesian perspective. Psychonomic Bulletin &
Review, 25(1), 178–206. https://doi.org/10.3758/s13423-016-1221-4
Lakens, D., McLatchie, N., Isager, P. M., Scheel, A. M., & Dienes,
Z. (2020). Improving Inferences About
Null Effects With
Bayes Factors and Equivalence
Tests. The Journals of Gerontology: Series B,
75(1), 45–57. https://doi.org/10.1093/geronb/gby065
Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence
Testing for Psychological
Research: A Tutorial.
Advances in Methods and Practices in Psychological Science,
1(2), 259–269. https://doi.org/10.1177/2515245918770963
Lenth, R. V. (2024). Emmeans: Estimated marginal means, aka
least-squares means. https://CRAN.R-project.org/package=emmeans
Leys, C., Delacre, M., Mora, Y. L., Lakens, D., & Ley, C. (2019).
How to Classify, Detect, and
Manage Univariate and
Multivariate Outliers, With
Emphasis on Pre-Registration.
International Review of Social Psychology, 32(1), 5.
https://doi.org/10.5334/irsp.289
Lopez, A., Choi, A. K., Dellawar, N. C., Cullen, B. C., Avila Contreras,
S., Rosenfeld, D. L., & Tomiyama, A. J. (2023). Visual cues and food
intake: A preregistered replication of Wansink
et al (2005). Journal of Experimental Psychology: General. https://doi.org/10.1037/xge0001503.supp
Lüdecke, D. (2024). sjPlot: Data visualization for statistics in
social science. https://CRAN.R-project.org/package=sjPlot
Lüdecke, D., Patil, I., Ben-Shachar, M. S., Wiernik, B. M., Waggoner,
P., & Makowski, D. (2021). see: An
R package for visualizing statistical models. Journal
of Open Source Software, 6(64), 3393. https://doi.org/10.21105/joss.03393
Makowski, D., Ben-Shachar, M. S., & Lüdecke, D. (2019). bayestestR:
Describing effects and their uncertainty, existence and significance
within the bayesian framework. Journal of Open Source Software,
4(40), 1541. https://doi.org/10.21105/joss.01541
McElreath, R. (2020). Statistical Rethinking:
A Bayesian Course with
Examples in R and Stan (2nd
ed.). CRC Press.
Mehr, S. A., Song, L. A., & Spelke, E. S. (2016). For
5-Month-Old Infants,
Melodies Are Social.
Psychological Science, 27(4), 486–501. https://doi.org/10.1177/0956797615626691
Morey, R. D., & Rouder, J. N. (2024). BayesFactor: Computation
of bayes factors for common designs. https://CRAN.R-project.org/package=BayesFactor
Ravenzwaaij, D. van, Cassey, P., & Brown, S. D. (2018). A simple
introduction to Markov Chain
Monte-Carlo sampling. Psychonomic Bulletin
& Review, 25(1), 143–154. https://doi.org/10.3758/s13423-016-1015-8
Reimers, S., & Stewart, N. (2015). Presentation and response timing
accuracy in Adobe Flash and
HTML5/JavaScript Web experiments.
Behavior Research Methods, 47(2), 309–327. https://doi.org/10.3758/s13428-014-0471-1
Rouder, J. N. (2014). Optional stopping: No problem for
Bayesians. Psychonomic Bulletin & Review,
21(2), 301–308. https://doi.org/10.3758/s13423-014-0595-4
Schönbrodt, F. D., Wagenmakers, E.-J., Zehetleitner, M., & Perugini,
M. (2017). Sequential hypothesis testing with Bayes
factors: Efficiently testing mean differences.
Psychological Methods, 22(2), 322–339. https://doi.org/10.1037/met0000061
Schroeder, J., & Epley, N. (2015). The Sound of
Intellect: Speech Reveals a
Thoughtful Mind, Increasing a
Job Candidate’s Appeal.
Psychological Science, 26(6), 877–891. https://doi.org/10.1177/0956797615572906
Troy, A. S., Ford, B. Q., McRae, K., Zarolia, P., & Mauss, I.
(2017). Change the things you can: Emotion regulation is
more beneficial for people from lower than from higher socioeconomic
status. Emotion, 17(1), 141–154. https://doi.org/10.1037/emo0000210
Van De Schoot, R., Depaoli, S., King, R., Kramer, B., Märtens, K.,
Tadesse, M. G., Vannucci, M., Gelman, A., Veen, D., Willemsen, J., &
Yau, C. (2021). Bayesian statistics and modelling. Nature Reviews
Methods Primers, 1(1), 1–26. https://doi.org/10.1038/s43586-020-00001-2
Voas, D., & Watt, L. (2024). The odds are it’s wrong:
Correcting a common mistake in statistics. Teaching
Statistics. https://doi.org/10.1111/test.12391
Wagenmakers, E.-J., Wetzels, R., Borsboom, D., & Maas, H. L. J. van
der. (2011). Why psychologists must change the way they analyze their
data: The case of psi: Comment on
Bem (2011). Journal of Personality and Social
Psychology, 100(3), 426–432. https://doi.org/10.1037/a0022790
Winter, B., & Bürkner, P.-C. (2021). Poisson regression for
linguists: A tutorial introduction to modelling count data
with brms. Language and Linguistics Compass, 15(11),
e12439. https://doi.org/10.1111/lnc3.12439
Wong, T. K., Kiers, H., & Tendeiro, J. (2022). On the
Potential Mismatch Between the
Function of the Bayes Factor and
Researchers’ Expectations. Collabra:
Psychology, 8(1), 36357. https://doi.org/10.1525/collabra.36357
Zwaan, R. A., Pecher, D., Paolacci, G., Bouwmeester, S., Verkoeijen, P.,
Dijkstra, K., & Zeelenberg, R. (2018). Participant
Nonnaiveté and the reproducibility of cognitive psychology.
Psychonomic Bulletin & Review, 25(5), 1968–1972.
https://doi.org/10.3758/s13423-017-1348-y